
Geometric Measure Theory Notes

My two primary sources are [Mag12] and [Sim14]. Torres also has good notes.

1 Lebesgue equals Hausdorff (3.9.23)

Theorem 2.9 of [Sim14].J J;9NAB8

Recall the definitions of Lebesgue and Hausdorff measures.

L n(A) = |A| := inf{
∞∑
j=1

|Rj| : Rj is a open rectangle, A ⊂ ∪∞
j=1Rj},

H n
δ (A) := inf{

∞∑
j=1

ωn

(
diamCj

2

)n

: diam(Cj) < δ,A ⊂ ∪∞
j=1Cj},

and H n(A) := limδ↘0 H n
δ (A).

Theorem 1.1. For every δ > 0 and A ⊂ Rn,

H n(A) = H n
δ (A) = |A|.

Proof. Taking δ ↘ 0, it suffices to show H n
δ = L n. Since taking closure does not affect

diameter, we may assume Ck are closed. Note also |E| = 0 =⇒ H n
δ (E) = 0 since we may

inscribe a ball Bj with diameter < δ in each rectangle Rj.

(H n
δ ≤ L n) The idea here is to “uniformly eat up” all the measure A with finitely many

pairwise disjoint balls, then iterate this algorithm ad infinitum.1 Fix an arbitrary cover {Rj}
of A by open rectangles.

Step k = 1. For each j, consider a disjoint family of cubes {Ik}2 with diam(Ik) < δ such that
the interiors of Ik are pairwise disjoint and ∪Ik = Rj. This is possible since Rj is an open set
(Thm 1.4, [SS05]). For each k, inscribe a closed ball Bk into Ik such that diam(Bk) >

1
2
sk

1i.e. Step 1 leaves 1
2 the measure, step 2 leaves 1

4 the measure, etc (these are not the correct constants,
but the idea is right).

2Ik depends on j also, which we suppress from the notation. Note that Ijk may intersect Ij
′

k for j ̸= j′ -
the pairwise disjoint condition is with respect to a fixed rectangle.
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Figure 1: Bk must be bigger than the green ball.

where sk is the side length of Ik [Figure 1]. This is obviously not sharp, but it doesn’t matter.
What does matter is that the most measure we’ve left off out is

|Ik −Bk| ≤ snk − ωn(
sk
4
)n = (1− ωn

4n
)sk.

Note the constant in front of sk is uniform in k and strictly smaller than 1. Therefore,

|Rj − ∪kBk| = | ∪k Ik −Bk| ≤ (1− ωn

4n
)
∑
k

sk = (1− ωn

4n
)|Rj|.

Thus, for each j, we may choose finitely many ball B1
j , ..., B

N
j such that the same inequality

holds.

Step k ≥ 2. For k = 2, we repeat the above argument but for Rj − ∪N
k=1B

k
j instead of Rj,

which is again an open set. Repeat this construction for k > 2.

In total, for each j we get a countable disjoint collection of balls {Bk
j } of Rj with radius < δ

such that |Rj − ∪kB
k
j | = 0, so H n

δ (Rj − ∪kB
k
j ) = 0. Therefore,

H n
δ (Rj) = H n

δ (∪kB
k
j ) ≤

∞∑
k=1

ωn

(
diamBk

j

2

)n

=
∞∑
k=1

|Bk
j | = |Rj|.

Thus

H n
δ (A) ≤

∞∑
j=1

H n
δ (Rj) ≤

∞∑
j=1

|Rj|,

and since Rj was an arbitrary cover, the result is shown.

J;9NAB8CAM:<K

(H n
δ ≥ L n) The idea here is to use Steiner symmetrization to prove the isodiameteric

inequality.
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Lemma 1.2. For any A ⊂ Rn,

|A| ≤ ωn

(
diamA

2

)n

.

Assuming the lemma, take Cj an arbitrary collection of sets which cover A, with diamCj < δ.
Then,

|A| ≤ | ∪j Cj| ≤
∑
j

|Cj| ≤
∑
j

ωn

(
diamCj

2

)n

.

(of Lemma 1.2). It suffices to prove A compact since taking closure does not increase diam-
eter. We sketch a symmetrization process as follows. For the hyperplane Hi := {xi = 0}
for i = 1, ..., n, let ξi ∈ Hi parameterize A in the sense that the fibers (under orthogonal
projection to Hi) of A are at most 1-dimensional. We record the Lebesgue measure (length)
of the fibers, the symmetrically distribute the length across ξi. This symmetrizes A across
the hyperplane Hi, is diameter non-increasing, and the Lebesgue measure of A is constant.
Furthermore, this preserves symmterizations across other hyperplanes. Thus, symmetriz-
ing A across each hyperplane Hi produces a subset of the ball of radius diamA

2
, proving the

lemma. ■

Both inequalities are proven, and so the result follows. ■

2 Riesz Representation Theorem II (4.6.23)

We state and prove RRT.

Theorem 2.1. If L is a bounded linear functional on Cc(Rn,Rm), then its variation |L| is a
(scaler-valued) Radon measure on Rn and there exists a |L|-measurable function g : Rn → Rm

such that g = 1 |L|-a.e., and for all ϕ ∈ Cc(Rn,Rm)

⟨L, ϕ⟩ =
∫
Rn

(ϕ · g)d|L|.

Moreover,

|L|(A) = sup{
∫
Rn

ϕ · gd|L| : ϕ ∈ Cc(A,Rm), |ϕ| ≤ 1}.

Proof. Recall the definition of the total variation (measure) of L.

|L| :=

Zack had previously shown that |L| is Radon, and that a version of RRT holds for L1. ■
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3 Compactness and Regularization (4.27.23)

Maggi proves this by intertwining the functional analysis with the geometric measure theory.
I think it’s more clear to separate them out. J J;9NAB8

Let (V, ∥ · ∥) be a normed linear space, and B ⊂ V the unit ball defined by ∥ · ∥. Recall the
following basic fact about the strong topology

Proposition 3.1. A normed linear space V is finite dimensional iff the unit ball is compact.

The proof is easy but irrelevant. What matters is the moral of the story - if we’re out looking
for compact sets in infinite dimensional space, the strong topology is not the correct one to
look in. Even the most basic candidate for a compact set is not compact, so there are way
too many open sets. We need a coarser topology.

Look not in V , but in its dual V ∗ together with its unit ball B∗ defined by the operator
norm. We see

B∗ := {µ : V → R : |µ(ϕ)| ≤ ∥ϕ∥} = {L : V → R : |µ(ϕ)| ≤ 1 for ∥ϕ∥ ≤ 1}.

In other words, µ : B → [−1, 1] and so µ ∈ [−1, 1]B; in other words, B∗ canonically sits
inside [−1, 1]B, so it is compact in the subspace topology by Tychnoff’s. However, the
subspace topology agrees does not agree with the topology induced by the operator norm.
The subspace topology oversees only that the evaluation pairing between V, V ∗ is continuous,
and so it agrees with the weak star topology. That is, a sequence {µi} in V ∗ converges weak-∗
to µ iff for every ϕ ∈ V ,

µi
∗
⇀ µ ⇐⇒ ⟨ϕ, µi⟩ → ⟨ϕ, µ⟩,

where ⟨−,−⟩ denotes the evaluation pairing. This is known as Banach-Alaoglu and will serve
as the backbone functional analysis tool for the compactness result for the space of Radon
measures (which by RRT is dual to V = Cc with a mildly strange topology). Truthfully,
it’s important that we have the sequential version of Banach-Alaoglu - this is true if V is
separable (counterexamples exist otherwise) which is true in our case. J J;9NAB8

Theorem 3.2. Given a sequence {µi} of Radon measures which are locally uniformly bounded,
i.e. for K ⊂ Rn compact

sup
i

µi(K) < ∞,

then there exists a subsequence, upon reindexing, {µk} which weak-∗ converge to a Radon
measure. That is, by RRT, ∫

K

ϕdµi →
∫
K

ϕdµ,

for each ϕ ∈ Cc(Rn).

Proof. The idea is basically sequential Banach-Alaoglu and RRT. We first give a construction
of {µk} via a diagonalization procedure. Consider an exhaustion of Rn by balls {Bj} centered
at 0. Define functionals

Fi,j(ϕ) :=

∫
Bj

ϕdµi,
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for ϕ ∈ Cc(Bj). Linearity of Fi,j is clear, and boundedness follows from the local uniformity
assumption as

|Fi,j(ϕ)| ≤ supϕ · µi(Bj) ≤ C supϕ,

where C = C(j). By sequential Banach-Alaoglu, there is a functional Fj : Cc(Bj) → R and

a subsequence {Fi′,j} such that Fi′,j
∗
⇀ Fj. By extracting subsequences subsequently, then

selecting the diagonal subsequence, we extract the desired {µk} upon relabeling. We claim
that F = limk µk. By construction, this limit is well-defined. Furthermore, by RRT we have

F (ϕ) :=

∫
Rn

ϕdµ,

for some Radon measure µ. For ϕ ∈ Cc(Rn), take sptϕ ⊂ Bj. Linearity follows since
F (ϕ) = Fj(ϕ), and Fj is linear. Boundedness follows from

|F (ϕ)| ≤ supϕ · µ(Bj) ≤ C supϕ.

Here C = C(j); nonetheless the weird topology we put on CC(Rn) allows us to consider F
as a bounded functional. ■

A similar statement holds for Rm-valued measures by applying the above to the positive and
negative part of each component to extract an Rm-valued measure. J J;9NAB8

We very briefly discuss regularization. The basic theory of regularization of functions extends
to measures as one expects. Given a Radon measure µ, define the function µϵ := ρϵ ∗ µ as

µϵ(x) :=

∫
Rn

ρϵ(x− y)dµ(y),

where ρ is a regularization kernel. One then makes this a measure by considering it as a
density wrt the Lebesgue measure µϵ(x)dx. The basic proposition that holds here is the
following.

Proposition 3.3. With the above notation, and Bϵ(E) the ϵ-ball (neighborhood) of E,

1. µϵ
∗
⇀ µ,

2. |µϵ|
∗
⇀ |µ|,

3. |µϵ|(E) ≤ µ(Bϵ(E)).

Proof. The one word proof of 1 and 3 is Fubini’s. 2 is more complicated, requiring an exercise
we skipped. ■

4 Area Formula I (6.1.23)

For f : Rn → Rm an injective, Lipschitz function (throughout the section, n ≤ m), set the
Jacobian of f to be

Jf(x) :=

{√
det(∇f(x)∗∇f(x)) f is differentiable

∞ f is not differentiable.
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By Rademacher’s theorem, Jf is integrable, and the area formula (in the case without
considering multiplicity) calculates for Lebesgue measurable E the measures of images in
terms of Jf as

Hn(f(E)) =

∫
E

Jf(x) dx. (1)

A useful consequence is the following.

Theorem 4.1. If f : Rn → Rm is an injective, Lipschitz function, and g : Rm → [−∞,∞]
is Borel and if g ≥ 0 or g ∈ L1(Rm,H n⌞f(Rm)), then g ◦ f is Borel and∫

f(Rn)

g dH n =

∫
Rn

g(f(x))Jf(x) dx.

There are two obvious requirements that need to hold for the above formula to be true.
First, if E := {x ∈ Rn : Jf(x) = 0}, then Hn(f(E)) = 0 (injectivity is dropped for this
statement). This is the content of Proposition 8.7. The second is that under the above
assumptions, f(E) had better be Hn measurable.

Proposition 4.2. If E is Lebesgue measurable in Rn and f : Rn → Rm is an injective
Lipschitz function, then f(E) is Hn measurable in Rm.

Proof. Assume E is bounded, and exhaust E by a sequence of compact sets {Ki} wrt Ln,
so |E − ∪Ki|. Since f is Lipschitz, it’s continuous and so f(Ki) is compact and ∪f(Ki) is
Borel. Then,

Hn(f(E)− ∪f(Ki)) = Hn(f(E − ∪Ki)) ≤ Lipfn · Hn(E − ∪Ki) = Lipfn · |E − ∪Ki| = 0.

Note that injectivity is used in the first equality. ■

Here, we used that Lipschitz functions play nicely with the Hausdorff measure in the sense
that Hs(f(E)) ≤ Lipf sHs(E), and is equal to the Lebesgue measure. For future reference,
recall also that Hausdorff measure plays nicely with scaling in that Hs(rE) = rsHs(E).

The next statement is to prove that area formula holds on arbitrary (not necessarily injective)
linear functions T : Rn → Rm.

Proposition 4.3. If T : Rn → Rm linear, then for every E ⊂ Rn,

Hn(T (E)) = JT · |E|.

For this, we must first recall some linear algebra. Set Lin(n,m) := {T : Rn → Rm : T linear}
and Isom(n,m) : {P ∈ Lin(n,m) : ⟨Px, Py⟩ = ⟨x, y⟩}. We think of Isom(n,m) as the set of
linear isometric embeddings - clearly all must be injective.

Lemma 4.4. For P ∈ Isom(Rn,Rm), we have P ∗P = idn.

6



Proof. Recall P ∗ := (Rm)∗ → (Rn)∗ is precomposition with P . The composition P ∗P is
understood as the following isomorphism:

Rn P−→ Rm → (Rm)∗
P ∗
−→ (Rn)∗ → Rn

x 7→ Px 7→ ⟨Px,−⟩ 7→ ⟨Px, P−⟩ 7→ x

where the last map is justified since the covector y 7→ ⟨Px, Py⟩ = ⟨x, y⟩ is metrically
equivalent to the vector y ∈ Rn. ■

Since P ∈ Isom(n,m) is an isometry, both P and its adjoint P ∗ (orthogonal projections) have
Lipschitz constant 1. Recall also the spectral theorem - every symmetric real-valued matrix
diagonalizes with real eigenvalues (and orthogonal eigenspaces) and the polar decomposition
- every linear map T : Rn → Rm can be realized as

T = PS

with S ∈ Lin(n, n) symmetric and P ∈ Isom(n,m) (both S, T are given explicitly in terms
of the diagonalization of T ). It turns out linear isometric embeddings do not change the fine
structure of the geometry, and in a sense we’ll make precise, all the change in the geometry
happens with S.

(of 4.3.) Set κ := DLnν = Hn(T (B))
|B| for ν(E) := Hn(T (E)) to be the density. The last

equality is justified by scaling since for all r > 0,

Hn(T (rB)) = rnHn(T (B))

|rB| = rn|B|.

It suffices to show the following two statements:

1. Hn(T (E)) = κ|E|,

2. JT = κ.

First assume κ = 0 (T is non-injective). Then, Hn(T (B)) = 0 =⇒ Hn(T (rB)) = 0 for
every r > 0 by linearity of T and so in the limit, Hn(Rn) = 0. By monotonicity of the
measure, Hn(T (E)) = 0 for every E.

Next, assume κ > 0 (T is injective). Since E 7→ Hn(T (E)) is Radon, by the decomposition
theorem for measures, it suffices to show the equality is true on balls Br(x) for r > 0 and
x ∈ Rn. This follows by translation invariance and scaling, as

Hn(T (Br(x)) = Hn(T (x+ rB)

= rnHn(T (B))

= rnκ|B|
= κ|Br(x)|,

which shows Hn(T (−)) ≪ Ln and identifies κ as the density.
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Remark 4.5. For linear functions, non-injectivity is very easy to deal with as both sides
evaluates to 0. We don’t need to consider multiplicity for this case. J J;9NAB8

To show JT = κ, we first show for T = PS and S(Q) = E for a cube Q, we have Hn(P (E))
|E| = 1,

since

|E| = |P ∗P (E)| ≤ Lip(P ∗)n|P (E)| = |P (E)| = Hn(P (E)) ≤ Lip(P )n|E| = |E|.

Therefore,

κ =
Hn(PS(Q))

|Q|
=

Hn(P (E))

|E|
|S(Q)|
|Q|

=
|S(Q)|
|Q|

.

Note we can switch to other sets when defining density (Thm 3.22, [Fol13]). By homogeneity,
we take Q to be the unit cube, so we must prove JT = |S(Q)|. Consider now the spectral
decomposition of Svi = λivi. Using the fact that ∇T = T as T is linear, pullback is
contravariant, and

⟨S∗Svi, vj⟩ = ⟨Svi, Svj⟩ =

{
λ2
i i = j

0 i ̸= j,

we compute

JT =
√
detT ∗T =

√
det(S∗P ∗PS) =

√
det(S∗S) =

√∏
i

|λi|2 = | det(S)| = |S(Q)|.

■

The next proof shows that the area formula does not see the singular set S := {Jf = 0}.
For notation, balls without mention to the dimension will be assumed to be dimension n,
and without mention to the center will be assumed to be centered at the origin.

Proposition 4.6. If f : Rn → Rm is Lipschitz, then on the singular set S,

H n(f(S)) = 0.

Proof. We will deduce H n
∞(f(S ∩ BR)) = 0 for arbitrary R > 0 (recall H n ≪ H n

∞). For
x ∈ S and 1 > ϵ > 0,3 by definition ∇f(x) is the linear map which satisfies the inequality

|f(x+ v)− f(x)−∇f(x)v| < ϵ|v|,

for |v| < r(ϵ, x). We can reinterpret the above (think of f(x) = 0.) in terms of small balls4:
for r = |v| < r(x, ϵ), we have

f(Br(x)) ⊂ f(x) +Bϵr(∇f(x)(Br)).

It would serve us well, therefore, to find a bound on the (translation-invariant) size of
Bϵr(∇f(x)(Br))

3As far as I can tell, the restriction to 1 > ϵ is for polish.
4Compare this to the definition of continuity in terms of balls. f is continuous at x if for r < r(ϵ, x),

f(Br(x)) ⊂ f(x) +Bϵ.

So if you can take a derivative, the information you gain is having a modulus of control over the error
tolerance ϵr in terms on your parameter r.
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Lemma 4.7. For 0 < ϵ < 1 and C = C(n,Lipf),

H n
∞(Bϵr(∇f(x)(Br))) ≤ Crnϵ.

The proof will use that S is singular by using a dimension drop argument, which produces
the ϵ. Assuming this lemma, we get for x ∈ S,

H n
∞(f(Br(x))) ≤ Crnϵ. (2)

We take the family F of balls with centers in S ∩BR,

F := {Br(x) ⊂ Rn : x ∈ S ∩BR, 0 < r < r(ϵ, x)}.

We cutoff S by BR to have bounded centers; we may therefore apply Besicovitch covering
theorem to extract subfamilies F1, ...,Fξ(n) such that each Fi is countable, pairwise disjoint
and S ∩BR ⊂ ∪ξ(n)Fi. By inequality 2,

H n
∞(f(S ∩BR)) ≤

ξ(n)∑
i=1

∑
Br(x)∈Fi

H n
∞(f(Br(x))

≤ Cωnϵ

ξ(n)∑
i=1

∑
Br(x)∈Fi

rn

≤ Cϵ

ωn

ξ(n)∑
i=1

∑
Br(x)∈Fi

|Br(x)|

=
Cϵ

ωn

ξ(n)∑
i=1

∣∣∣∣ ⋃
Br(x)∈Fi

Br(x)

∣∣∣∣
≤ Cϵξ(n)

ωn

|B1(S ∩BR)|.

Therefore, it suffices to prove the lemma.

(of Lemma 4.7). We first identify that ∇f(x)(Br) ⊂ Bm
rLipf ∩ ∇f(x)(Rn), where the right

hand side is a disk DrLipf of dimension k < n since x ∈ S. This follows from homogeneity
and ∥∇f∥ ≤ Lipf , since we may characterize Lipf as

Lipf = sup
x̸=y

|f(x)− f(y)|
|x− y|

.

Therefore, we must obtain a bound of the form

H n
∞(Bϵ(Ds)) ≤ C(n, s)ϵ, (3)

since since taking a neighborhood of a disk is linear,

H n
∞(Bϵr(∇f(x)(Br))) ≤ H n

∞(Bϵr(B
m
rLipf ∩∇f(x)(Rn)))

≤ rnH n
∞(Bϵ(B

m
Lipf ∩∇f(x)(Rn)))

≤ rnC(n,Lipf))ϵ.

9



To obtain inequality 3, we produce a covering of Bϵ(Ds) ⊂ Rk × Rm−k by translates of

Bk
ϵs ×Bm−k

ϵ ⊂ Rk × Rm−k.

Note that we need Cϵ−k number of translates to cover Bϵ(Ds) ≈ Bk
s × Bm−k

ϵ for small ϵ,
since area of Bk

s grows like sk.5 By Pythagorean theorem,

diam(Bk
ϵs ×Bm−k

ϵ )2 = diam(Bk
ϵs)

2 + diam(Bm−k
ϵ )2 = 4ϵ2(1 + s2).

Since k < n, we have

H n
∞(Bϵ(Ds)) ≤ ωn

∑
# translates

(
diam(Bk

ϵs ×Bm−k
ϵ )

2

)n

= ωnCϵ−k(2ϵ2(1 + s2))
n
2

= C(n, s)ϵn−k

≤ Cϵ.

■

By the lemma, H n(S) = 0. ■

5 Approximate Tangent Spaces (9.20.23)

Chapters 10.1-10.2 of [Mag12] & Chapter 3 of [Sim14]. J J;9NAB8

Set k ≤ n. We say a set M ⊂ Rn is k-rectifiable if there are countably many Lipschitz
maps fi : Rk → Rn such that

H k(M \ ∪∞
i=1fi(Rk)) = 0.

The point is that a k-rectifiable set is a measure-theoretic version of a k-dimensional manifold.
We say M is locally k-rectifiable if in addition, for every compact K, H k(K ∩M) < ∞.
The point here is that H k⌞M is Radon (not just Borel) iff M is locally k-rectifiable. By
Kirezbraun theorem and regularity properties of Hausdorff measure, M is k-rectifiable iff
there exists Borel M0 which is H k-null such that

M = M0 ∪
∞⋃
i=1

fi(Ei),

where Ei ⊂ Rk are bounded, Borel sets, and fi is Lipschitz. This decomposition is highly
non-unique, and we will exploit this in the following lemma by asking for a decomposition
with nice regularity properties. Namely, for each i ∈ N, the pair (fi, Ei) will form a regular
Lipschitz image. We say (f, E) form a regular Lipschitz image if

5e.g. For 2-dimensional disks, need (up to a dimensional constant) one-hundred small disks D1/10 to
cover one big disk D1.
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1. f is injective and differentiable on E, and Jf > 0 (i.e. Jf ̸= 0 anywhere) on E.6

2. All points in E form a point of density 1 for E.

3. All point in E are Lebesgue points of ∇f ( =⇒ all points are Lebesgue points of Jf).

4. There exists a lower bound for Lip(f) on E.

Morally speaking, this is saying (f, E) is a Lipschitz injective immersion with good C1

control. Such a decomposition of a rectifiable set M always exists (Theorem 10.1) by a
number of previous theorems. Here are the quoted ones from [Mag12].

1. Theorem 2.10: Borel sets admit inner/outer approximations, if the measure is a
locally finite Borel measure.

2. Theorem 8.7: Singular values of a Lipschitz function are H k-null.

3. Theorem 8.8: The regular points of a Lipschitz function admit a countable, almost
flat partition, on the function is injective on each leaf.

4. Rademacher’s: Lipschitz functions are differentiable almost everywhere.

5. Theorem 5.16: Almost every point of a L1
loc(µ) function satisfies MVP, if µ is Radon.

The point of the above four axioms is that they are sufficient conditions to make the following
lemma true. This lemma classifies the approximate tangent space for the image of a regular
Lipschitz function. Observe that if f is an C1 injective immersion, the conclusion is clear.
So the key point here is te drop in regularity.

Lemma 5.1. Suppose Mk = f(E) with (f, E) a regular Lipschitz image. Then, then for
any x ∈ M , the approximate tangent space is given by

TxM = (∇f |z)(Rk),

where x = f(z).

Proof. Recall that the approximate tangent plane to M at x is the k-plane TxM ⊂ Rn such
that

lim
r↓0

1

rk

∫
M

ϕ

(
y − x

r

)
dH k(y) =

∫
TxM

ϕ(y) dH k(y),

for all ϕ ∈ Cc(Rn). This is the measure-theoretic version of a tangent space. By pulling back
along f , and using change of variables,

1

rk

∫
M

ϕ

(
y − x

r

)
dH k(y) =

1

rk

∫
E

ϕ

(
f(ω̃)− f(z)

r

)
Jf(ω̃) dω̃

=

∫
Rk

1E(z + rw) · ϕ
(
f(z + rw)− f(z)

r

)
Jf(z + rw)︸ ︷︷ ︸

:=ur(w)

dw

6So f is an injective immersion on E, but ∇f is not necessarily continuous.
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Since z ∈ E is a point of density 1 for E,

lim
r↓0

∫
Rk

1E(z + rw) dw = 1E(z) = 1.

Since z ∈ E is Lebesgue point for Jf,

lim
r↓0

∫
Rk

Jf(z + rw) dw = J(z).

Take the limit as r ↓ 0 on both sides. For the moment, take on faith that DCT can be
justified, and switch limr↓0 with

∫
. Since ϕ is continuous and f is differentiable at z ∈ E,

ϕ

(
f(z + rw)− f(z)

r

)
r↓0−−→ ϕ (∇f |zw) .7

Altogether,8

lim
r↓0

∫
Rk

ur(w) dw =

∫
Rk

ϕ(∇f |zw)Jf(z) dw

=

∫
Rk

ϕ(∇f |zw)J(∇f |z)(w) dw

=

∫
∇f |z(Rk)

ϕ dH k,

where the last step follows from area formula of injective, Lipschitz maps. Now to justify
DCT. Observe the L∞ (not pointwise, as values of Jf can take ∞ on a null set) upper bound

∥ur∥∞ ≤
(
sup
Rn

ϕ

)
· Lip(f)k,

and notice the RHS is a constant function. It suffices then to show that for all r > 0,
sptur ⊂ BR, for some R which is independent of r. Since sptur := {ur > 0}, and a set is
bounded iff its closure is, it suffices to show {ur > 0} ⊂ BR. Take w ∈ {ur > 0}, so that

0 < 1E(z + rw) · ϕ
(
f(z + rw)− f(z)

r

)
Jf(z + rw);

in particular, z + rw ∈ E. Thus, last condition of a regular Lipschitz image immediately
gives for some λ = λ(E) > 0,

|f(z + rw)− f(z)| ≥ λr|w|. (4)

7Type check: note that ∇f |z is a linear map from Rk → Rn (the Jacobian), and w is a vector in Rk.
8The gradient of the linear map ∇f |z is ∇f |z. Thus

J(∇f |z)(w) =
√

det((∇(∇f |z)|w)∗·(∇(∇f |z)|w)) =
√
det(∇f |∗z · ∇f |z) = Jf(z).
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On the other hand, since

0 < 1E(z + rw) · ϕ
(
f(z + rw)− f(z)

r

)
Jf(z + rw),

it follows that
f(z + rw)− f(z)

r
∈ sptϕ.

Since sptϕ ⊂ BΛ for some Λ = Λ(ϕ),∣∣∣∣f(z + rw)− f(z)

r

∣∣∣∣ ≤ Λ. (5)

Together, inequalities 4 and 5 together give the conclusion upon setting R := Λ
λ
, as

λr|w| ≤ rΛ =⇒ w ∈ BΛ
λ
.

■

In the next theorem, we ask that M be decomposed as

M = M0 ⊔
∞⋃
i=1

fi(Ei),

where H k(M0) = 0, and each (fi, Ei) is a regular Lipschitz image.

Theorem 5.2. Suppose M ⊂ Rn is a locally k-rectifiable set. Then for H k-a.e. point
x ∈ M , there exists a unique k-dimensional plane TxM such that:

1. The blow-up (defined below) of the measure H k⌞M weak-star converges to H k⌞TxM .
That is, as r ↓ 0,

H k⌞

(
M − x

r

)
∗−⇀ H k⌞TxM.

2. For H k-a.e. x ∈ M ,

lim
r↓0

H k(M ∩Br(x))

ωkrk
= 1.

More precisely, this happens whenever x admits an approximate tangent space.

Proof. In the proof, we will need the notion of a blow-up. For fixed x ∈ M and r > 0, we
set

ηx,r(y) = η(y) :=
y − x

r
,

which centers a chosen point x ∈ M at the origin, then rescales (in fact, magnifies when
0 < r < 1) a point of distance r to unit distance.
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1. This would immediately follow from Lemma 5.1 upon setting TxM = ∇f |z(Rk), if not
for the H k-null set M0. This will be taken care of by the upper density theorem which
tells us for each i, as Mi is locally k-rectifiable, for a.e. x ̸∈ Mi,

lim
r↓0

H k(Mi ∩Br(x))

ωkrk
= 0.

Note that since the RHS is 0, in fact the numerator and denominator need not decay
at the same rate. So more generally, for any R > 0,

lim
r↓0

H k(RMi ∩BrR(x))

ωkrk
= 0.

We use this as follows. Let ϕ ∈ Cc(Rn) such that sptϕ ⊂ BR(0). For x ∈ Mi, using
elementary interactions of Hausdorff measure with symmetries,∣∣∣∣ 1rk

∫
M\Mi

ϕ ◦ ηx,r dH k

∣∣∣∣ =
∣∣∣∣∣
∫
ηx,r(M\Mi)

ϕ dH k

∣∣∣∣∣
≤ H k(BR(0) ∩ ηx,r(M \Mi)) · | sup

Rn

ϕ|

= ωk| sup
Rn

ϕ| · H k(BrR(0) ∩ (M \Mi)− x)

ωkrk

= ωk| sup
Rn

ϕ| · H k(BrR(x) ∩ (M \Mi))

ωkrk

r↓0−−→ 0.

2. This again follows from algebraic set-theoretic interactions of the blow-up with Haus-

dorff measure. Choose a sequence {ϕi} ⊂ Cc(Rn) such that ϕi
i→∞−−−→ 1Bn

1 (0)
. On one

hand,

lim
r↓0

1

rk

∫
M

ϕi ◦ η(y) dH k(y) = lim
r↓0

∫
ηM

ϕi(y) dH
k(y)

i→∞−−−→ lim
r↓0

H k(ηM ∩Bn
1 (0)).

On the other hand,∫
TxM

ϕi(y) dH
k(y)

i→∞−−−→ H k(TxM ∩B1(0)) = H k(Bk
1 (0)) = ωk.

As the two expressions are equal, we calculate

1 = lim
r↓0

H k(ηM ∩Bn
1 (0))

ωk

= lim
r↓0

rkH k(ηM ∩Bn
1 (0))

ωkrk

= lim
r↓0

H k((M − x) ∩Bn
r (0))

ωkrk

= lim
r↓0

H k(M ∩Bn
r (x))

ωkrk
.
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Figure 2: νM
∂M as in Theorem 6.1.

■

Remark 5.3. This completes the forwards (easy) direction of the heuristic “measure-theoretic
manifold iff admits measure-theoretic tangent planes”.

As an application of Lemma 5.1, we can classify approximate tangent spaces of graphs of
Lipschitz functions.

Corollary 5.4. If u : Rn → R is a Lipschitz function and f : Rn → Rn+1 is given by
f(z) = (z, u(z)), then the graph of u, Γ := f(Rn), is locally H n-rectifiable. Furthermore,
for a.e. z ∈ Rn,

Tf(z)Γ = ν⊥|z,

where ν|z = (−∇u|z, 1).

Proof. We first show Γ is locally H n-rectifiable. Since u is Lipschitz, so is f ; therefore, Γ is
manifestly rectifiable. We argue Γ is locally n-rectifiable, that is, for all compact K ⊂ Rn+1,

H n(K ∩ Γ) < ∞.

Since Γ is closed since it’s a graph, soK∩Γ is compact. Since H n is Radon, H n(K∩Γ) < ∞.
Next, we characterize the approximate tangent space of Γ. By Lemma 5.1, we have (weakly)

Tf(z)Γ = ∇f |z(Rn).

But ∇f |z = ∇(z̃, u(z̃))|z̃=z = (1,∇u|z). Note that for any w ∈ Rn, we have

∇f |zw · ν|zw = (1,∇u|zw) · (−∇u|zw, 1) = −∇u|zw +∇u|zw = 0.

The conclusion follows. ■

6 Gauss-Green on Hypersurfaces (10.17.23)

Following [Mag12] 11.3, but we shift indexing of dimensions by 1. J J;9NAB8
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Theorem 6.1 (Gauss-Green). Mn ⊂ Rn+1 is a C2-hypersurface with boundary ∂M , then
there exists a normal vector field HM ∈ C0(M,Rn+1) and unit normal vector field νM

∂M ∈
C1(∂M, Sn) such that∫

M

∇Mϕ dH n =

∫
M

ϕHM dH n +

∫
∂M

ϕνM
∂M dH n−1,

where ϕ ∈ C1
c (Rn+1). Here, νM

∂M ⊥ T for every vector field T ∈ Rn+1 → Rn+1 such that
T ⊥ M .

Remark 6.2. Gauss-Green is an equality of vector fields in Rn+1. This is also equivalent to
a certain version of divergence theorem as∫

M

divMT dH n =

∫
M

T ·HM dH n +

∫
∂M

T · νM
∂M dH n−1,

where divMT := divT − (∇TνM) · νM .

Remark 6.3. There’s no need for M to be orientable. The mean curvature vector field does
not see orientation, but the scalar mean curvature HM defined as

HM = HMνM

manifestly depends on choice of unit normal.

Remark 6.4. The last condition is since ∂M has codimension 2, so there are two normal
directions, as in Figure 2. The condition specifies which normal direction νM

∂M lies in, namely
the one tangent to M . Since νM is assumed to be continuous, we (can and do) extend it to
the boundary, so that the equation

νM
∂M · νM = 0

is well-defined on ∂M .

The basic idea, as with Aidan’s talk last week, is to write M locally as a graph of a function,
then pullback to a top-dimensional set to use divergence theorem/Gauss-Green.

To begin, we recall Corollary 11.7 which relates integration on graph and on its domain
in low-regularity. As with a lemma in my previous talk, this is standard for high enough
regularity.

Proposition 6.5. Consider S is locally H n−1-rectifiable in Rn, u : Rn → R is a Lipschitz
function and Γ := (z, u(z)) is its graph. Then for any g ≥ 0 or g ∈ L1(Rn,H n−1⌞Γ),∫

Γ

g dH n−1 =

∫
S

ḡ
√

1 + |∇Su|2 dH n,

where ḡ = g(z, u(z)).

This bar notation will be frequently used in the proof of Theorem 6.1. Think of this notation
as “pulling back” an object on graph Γ to S along u.
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Figure 3: Hypersurface as graph of function.

Proof of 6.1. By partitions of unity and an action by the Euclidean group and homotheties,
we normalize to take ϕ ∈ C1

c (C), where C := Dn × [0, 1] is the cylinder over the unit
hyperdisk. We assume that M is given locally as the graph of a C2 function u over D ∩ U
for some open set U ⊂ Rn. Namely,

C ∩M = {(z, u(z)) : z ∈ D ∩ U}
C ∩ ∂M = {(z, u(z)) : z ∈ D ∩ ∂U}

where U ⊂ Rn is a set with (possibly empty) C2 boundary as in Figure 3.

By modifying Corollary 5.4, we define the unit normal νM ∈ C1(C ∩M,Sn) as

ν̄M =
(−∇u, 1)√
1 + |∇u|2

on D ∩ U.

Define the (scalar) mean curvature by setting

HM = −div

(
∇u√

1 + |∇u|2

)
on D ∩ U.

■

Compute for ϕ ∈ C1
c (Rn+1),

∇ϕ · νM = (∇ϕ, ∂nu) ·
(−∇u, 1)√
1 + |∇u|2

=
−∇ϕ · ∇u+ ∂n+1ϕ√

1 + |∇u|2

Pulling back to D ∩ U , we have for ϕ̄ ∈ C1
c (D),

∇ϕ · νM = −∇ϕ · ∇u− ∂n+1ϕ√
1 + |∇u|2

.

For ei the constant vector fields on Rn+1, we calculate

ei · νM :=


1√

1+|∇u|2
i = n+ 1

− ∂iu√
1+|∇u|2

1 ≤ i ≤ n

17



which suggests that we should separate out our analysis into two pieces, the vertical bit
i = n + 1 and the horizontal bits 1 ≤ i ≤ n. Since we have ∇Mϕ = ∇ϕ− (∇ϕ · νM)νM , we
calculate for 1 ≤ i ≤ n,

en+1 ·
∫
M

∇Mϕ dH n =

∫
D∩U

(
∂n+1ϕ+

∇ϕ · ∇u− ∂n+1ϕ

1 + |∇u|2

)√
1 + |∇u|2 dH n, (6)

ei ·
∫
M

∇Mϕ dH n =

∫
D∩U

(
∂iϕ− ∇ϕ · ∇u− ∂n+1ϕ

1 + |∇u|2
∂iu

)√
1 + |∇u|2 dH n. (7)

where the factors of
√
1 + |∇u|2 come from Proposition 6.5. We have the equality

∇ϕ̄ = ∇ϕ+ ∂n+1ϕ∇u, (8)

which is immediate from chain rule for 1 ≤ i ≤ n,

∇ϕ̄|x = ∇ϕ(x, u(x))

=
∑
i

∂ϕ(x, u(x))

∂xk

∂xk

∂xi
+

∂ϕ(x, u(x))

∂xn+1

∂u

∂xi

=
∑
i

∂iϕ(x, u(x)) + ∂n+1ϕ(x, u(x))
∑
i

∂iu(x)

= ∇ϕ|x + ∂n+1ϕ|x∇u|x.

Similarly, we record that
∂iϕ̄ = ∂iϕ+ ∂n+1ϕ∂iu.

We work on the vertical bit. Via equation 8, we rewrite the integrand of 6 as(
∂n+1ϕ+

∇ϕ · ∇u− ∂n+1ϕ

1 + |∇u|2

)√
1 + |∇u|2 = ∇u · ∇ϕ√

1 + |∇u|2
+ ∂n+1ϕ

√
1 + |∇u|2 − ∂n+1ϕ√

1 + |∇u|2

=
∇u · ∇ϕ√
1 + |∇u|2

+
∂n+1ϕ(1 + |∇u|2)− ∂n+1ϕ√

1 + |∇u|2

=
∇u · ∇ϕ√
1 + |∇u|2

+
∂n+1ϕ|∇u|2√
1 + |∇u|2

=
∇u√

1 + |∇u|2
· ∇ϕ+ ∂n+1ϕ∇u

=
∇u√

1 + |∇u|2
· ∇ϕ̄
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By ϕ ≡ 0 on ∂D, and product rule for divergences,

(6) =

∫
D∩U

∇u√
1 + |∇u|2

· ∇ϕ̄ dH n

=

∫
D∩U

div

(
ϕ̄∇u√

1 + |∇u|2

)
− ϕ̄ div

(
∇u√

1 + |∇u|2

)
dH n

=

∫
D∩∂U

ϕ̄√
1 + |∇u|2

∇u · νU dH n−1 −
∫
D∩U

ϕ̄ div

(
∇u√

1 + |∇u|2

)
dH n

= en+1 ·
∫
∂M

ϕνM
∂M dH n−1 +

∫
D∩E

ϕ̄H̄M dH n

= en+1 ·
∫
∂M

ϕνM
∂M dH n−1 + en+1 ·

∫
M

ϕHM dH n,

where the second term in the last equality follows from a previous calculation of en+1 · νM ,
while the first term follows from defining on C ∩ ∂M

en+1 · νM
∂M :=

∇u · νU√
1 + |∇u|2

√
1 + |∇Su|2

,

where S := D ∩ ∂U .

Next, we work on the horizontal bit. For 1 ≤ i ≤ n, we calculate by equation 7 divergence
theorem, and ϕ̄ ≡ 0 on ∂D,

ei ·
∫
M

ϕHM dH n = ei ·
∫
M

ϕHMνM dH n

=

∫
D∩U

ϕ̄∂iu div

(
∇u√

1 + |∇u|2

)
dH n

=

∫
D∩U

div

(
ϕ̄∂iu

∇u√
1 + |∇u|2

)
−∇(ϕ̄∂iu) ·

∇u√
1 + |∇u|2

dH n

=

∫
D∩∂U

ϕ̄∂iu√
1 + |∇u|2

∇u · νU dH n−1 −
∫
D∩U

ϕ̄√
1 + |∇u|2

∇(∂iu) · ∇u︸ ︷︷ ︸
(∗)

dH n

−
∫
D∩U

∂iu∇ϕ · ∇u√
1 + |∇u|2

+
∂iu∂n+1u|∇u|2√

1 + |∇u|2
dH n
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and for 1 ≤ j ≤ n, we calculate

(∗) = ϕ̄√
1 + |∇u|2

∑
j

uijuj

=
ϕ̄

2
√

1 + |∇u|2
∂i(
∑
j

u2
j)

=
ϕ̄

2
√

1 + |∇u|2
∂i|∇u|2

= ϕ̄∂i(
√
1 + |∇u|2)

where subscripts in the above calculation denote partial derivatives. It follows that

ei ·
∫
M

(∇Mϕ− ϕHM) dH n

=

∫
D∩U

(∂iϕ+ ∂n+1ϕ∂iu)
√
1 + |∇u|2 + ϕ̄∂i(

√
1 + |∇u|2) dH n

−
∫
D∩∂U

ϕ̄∂iu
∇u · νU√
1 + |∇u|2

dH n−1

=

∫
D∩U

∂iϕ̄
√

1 + |∇u|2 + ϕ̄∂i(
√
1 + |∇u|2) dH n

−
∫
D∩∂U

ϕ̄∂iu
∇u · νU√
1 + |∇u|2

dH n−1

=

∫
D∩U

∂i(ϕ̄
√

1 + |∇u|2)︸ ︷︷ ︸
divergence quantity

dH n −
∫
D∩∂U

ϕ̄∂iu
∇u · νU√
1 + |∇u|2

dH n−1

=

∫
D∩∂U

ϕ̄(
√

1 + |∇u|2ei −
∂iu√

1 + |∇u|2
∇u) · νU dH n−1.

On D ∩ ∂U , we set

ei · νM
∂M := (

√
1 + |∇u|2ei −

∂iu√
1 + |∇u|2

∇u) · νU√
1 + |∇Su|2

.

It suffices to check νM
∂M defined in this way is unit and normal to νM and ∂M , but we stop

here.

7 Compactness (9.14.23)

Theorem 7.1. Suppose {Ei} is a sequence of sets of finite perimeter in Rn such that

1. Ei ⊂ BR for some R > 0,

2. P (Ei) ≤ C for some constant uniform in i.

Then, there Ei subsequentially converges to a set of finite perimeter E ⊂ BR and µEi

∗
⇀ µE.
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Proof. The compactness comes from a setup in a specific function space. The ambient is the
complete metric space

X := {E ∈ M(L n) : P (E) < ∞}/ ∼,

d(E,F ) := |E∆F | = ∥1E − 1F∥L1(Rn)

where ∼ means up to measure 0 identification. The metric here is justified as convergence
of sets is, by definition, L1 convergence of their indicator functions. For r, p > 0, define

Yr,p := {E ∈ M(L n) : P (E) ≤ p, E ⊂ Br},

and we claim these are compact ( ⇐⇒ totally bounded + complete) subsets of X. The sets
Yr,p are closed by lower semi-continuity of perimeter, so they are complete. It’s clear that
the conclusion follows upon showing Yr,p is totally bounded. That is, for every σ > 0, there
is a finite collection {T1, .., TM} such that for any E ∈ Yr,p,

min
j

d(E, Tj) = min
j

|E∆Tj| ≤ σ.

Therefore, the goal is to estimate |E∆Tj| in terms of n, p and an extra parameter r to control
the scale. For fixed r > 0, let {Qi} to be an enumeration of open cubes with vertices in
rZn ⊂ Rn. |E| < ∞ by monotonicity and for only the first N cubes (up to reindexing), is E
is contained in at least half the cube. That is, for i ∈ {1, ..., N},

|Qi ∩ E| ≥ rn

2
.

It follows for i ≥ N + 1, over half Qi does not see E. That is for i ∈ {1, ..., N},

|Qi \ E| ≥ rn

2
.

We set T := ∪n
i=1Qi. From here, we derive the desired bound, assuming a corollary of the

Poincare-Wirtinger inequality. For ϵ > 0 and uϵ := 1E ∗ ρϵ,

√
nr

∫
Rn

|∇uϵ| =
√
nr
∑
i∈N

∫
Qi

|∇uϵ| ≥
∑
i∈N

∫
Qi

|uϵ − ūϵ,i|,

where ūϵ,i denotes the average value of uϵ on Qi. Taking ϵ ↓ 0, by L1
loc convergence of
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mollification,

√
nrP (E) ≥

∑
i∈N

∫
Qi

|1E − 1̄i|

=
∑
i∈N

∫
Qi

|1E − |Qi ∩ E|
rn

|

=
∑
i∈N

|E ∩Qi|(1−
|Qi ∩ E|

rn
)︸ ︷︷ ︸

1E=1

+ |Qi \ E| |Qi ∩ E|
rn︸ ︷︷ ︸

1E=0

=
|E ∩Qi|

rn

∑
i∈N

rn − |Qi ∩ E|︸ ︷︷ ︸
|Qi\E|

+|Qi \ E|

=
N∑
i=1

2|E ∩Qi||Qi \ E|
rn

+
∞∑

i=N+1

2|E ∩Qi||Qi \ E|
rn

≥
∑
N

|Qi \ E|+
∑
∞

|Qi ∩ E|

=
∑
N

|T \ E|+ |E \ T |

= |E∆T |

With this inequality, we simply choose r such that
√
npr ≤ σ, and we apply the above in-

equality. The uniformity in E comes from the fact that E ⊂ BR, so that we can immediately
restrict to {Qi} (associated to scale r) to the finitely many cubes which intersect BR. So
then M = M(r, R, n) = |Pow(S)| where S is the subset of cubes {Qi} which intersects BR.
The conclusion follows.

It remains to show the inequality on cubes Q = x+ (0, r)n and u ∈ C1(Rn),∫
Q

|u− ūQ| ≤
√
nr

∫
Q

|∇u|.

Up to change of variable and normalizing the average to be 0, it suffices to show∫
Q

|u| ≤
∫
Q

|∇u|

where Q is the unit cube and ūQ = 0. By Cauchy-Schwarz,

∑
i

|∂iu| ≤
√
n

√∑
i

(∂iu)2 =
√
n|∇u|,

so it suffices to show the Poincare inequality over the unit cube∫
Q

|u| ≤
∑
i

∫
Q

|∂iu|.
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The proof proceeds by induction. For n = 1, by MVT and FTOC, there is some xo ∈ (0, 1)
such that ∫

Q

|u| dx = |u(x)| = |u(x)− u(xo)| ≤
∫ 1

0

|u′(x)| dx.

For higher dimensions, consider (x1, x) to be a decomposition of Rn = R × Rn−1. Set

v(x1) :=
∫
u(x1, x)dx, and note that

∫ 1

0
v(x1) dx1 = 0.∫

Q

|u| ≤
∫ 1

0

∫
(0,1)n−1

|u(x)− v(x1)| dxdx1 +

∫ 1

0

|v(x1)| dx1 ·
∫
(0,1)n−1

dx︸ ︷︷ ︸
=1

≤
∫ 1

0

n∑
i=2

|∂iu|︸ ︷︷ ︸
ind. hyp.

dxdx1 +

∫ 1

0

|v′|︸︷︷︸
n=1

dx1

≤
n∑

i=1

∫
Q

|∂iu|. ■

Remark 7.2. Replacing uniformly bounded perimeter with uniformly bounded diameters,
this still converges subsequentially to a set of finite perimeter. The difference here is that
we get convergence up to translation, that is there is a sequence {xi} ⊂ Rn such that

subsequentially xi + Ei
L1

−→ E, µxi+Ei

∗
⇀ µE

Remark 7.3. Both uniformity conditions in the compactness theorem are necessary. If we
drop the condition that Ei ⊂ BR, we can take Ei to be a sequence pushing the unit ball B
off to ∞. If we drop the uniform bound on perimeter, we can consider Ei := B \ ∪i

j=1Aj

where Aj are mutually disjoint balls of radius i−α for α ∈ (1
2
, 1).

Lastly, we localize the compactness theorem. So in the first example of the previous remark,
you can still say that this sequence converges locally to ∅.

Corollary 7.4. Suppose Ei are sets of locally finite perimeter in Rn such that for any R > 0,

sup
i

P (Ei;BR) < ∞.

Then, {Ei} converge subsequentially to a set of locally finite perimeter E and µi
∗
⇀ µE.

Proof. For each j ∈ N, we apply the compactness theorem to the sequence {(Ei ∩ Bj)}i∈N,
which is justified by the inequality

P (Ei ∩Bj) ≤ P (Ei;Bj) + P (Bj),

to be proved. By a standard diagonalization argument, we extract a for each j, a set of
finite perimeter Fj. Furthermore, by construction Fj ⊂ Fj+1 and E = ∪∞Fj will be a set of
locally finite perimeter.
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Let 0 ≤ uϵ, vϵ ≤ 1 be convolutions of the indicator functions of E,BR′ respectively, for
R′ < R. Taking R′ ↑ R will give the result.

P (E ∩BR′) ≤ lim inf
ϵ↓0

∫
Rn

|∇(uϵvϵ)|︸ ︷︷ ︸
lower semi-continuity

≤ lim sup
ϵ↓0

∫
Rn

uϵ|∇vϵ|+ vϵ|∇uϵ|

≤ lim sup
ϵ↓0

∫
Rn

|∇vϵ|+ vϵ|∇uϵ|

≤ P (BR′) + lim sup
ϵ↓0

∫
BR′

|∇uϵ|

≤ P (BR′) + P (E;BR′) ■
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