Inner Product Spaces

Consider $V=(V, g)$ a finite dimensional inner product space, where g is a symmetric, positive definite $(0,2)$-tensor. Often, we will write $g(v, w)=\langle v, w\rangle$. Fix a basis $\left\{v_{i}\right\}$ of V, and declare

$$
g_{i j}:=\left\langle v_{i}, v_{j}\right\rangle
$$

Bundling $g_{i j}$ into a matrix g, we observe g is invertible by non-degeneracy of the inner product, and g is positive-define and symmetric. If V, W are individually inner product spaces, so is their tensor product $V \otimes W$ by linearly extending the following formula on simple tensors

$$
\left\langle v \otimes w, v^{\prime} \otimes w^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle \cdot\left\langle w, w^{\prime}\right\rangle .
$$

In this way, we get inner products on all tensor powers of V. We extend the inner product to one on V^{*} by respecting the evaluation pairing

$$
\text { eval : } \begin{aligned}
V^{*} \otimes V & \rightarrow \mathbb{R} \\
\omega & \otimes v
\end{aligned}
$$

Note that the choice of a basis on V induces the dual basis $\left\{v^{i}\right\}$ on V^{*}. We define the inner product on the dual basis $\left\langle v^{i}, v^{j}\right\rangle$ to be $i j$-th entry of the inverse metric to be

$$
g^{i j}=\left\langle v^{i}, v^{j}\right\rangle:=\left(g^{-1}\right)_{i j}
$$

and extend linearly. Since $g^{*}=g$ and $\left\{\lambda_{i}\right\}$ the eigenvalues of g are positive, then $\left(g^{-1}\right)^{*}=$ $\left(g^{*}\right)^{-1}=g^{-1}$ and $\left\{\lambda_{i}^{-1}\right\}$ the eigenvalues of g^{-1} are also positive. In other words, g^{-1} defines an inner product on V^{*}. In the basis $\left\{v_{i}\right\}$, the metric $g^{i j}$ satisfies

$$
\begin{aligned}
\sum_{j} g^{i j} g_{j k} & =\sum_{j}\left\langle v^{i}, v^{j}\right\rangle\left\langle v_{j}, v_{k}\right\rangle \\
& =\sum_{j} \operatorname{eval}^{\otimes 2}\left(v^{i} \otimes v_{j}, v^{j} \otimes v_{k}\right) \\
& =\sum_{j} \operatorname{eval}\left(v^{i} \otimes v_{j}\right) \cdot \operatorname{eval}\left(v^{j} \otimes v_{k}\right) \\
& =\sum_{j} v^{i}\left(v_{j}\right) \cdot v^{j}\left(v_{k}\right) \\
& =\sum_{j} \delta_{j}^{i} \delta_{k}^{j} \\
& =\delta_{k}^{i}
\end{aligned}
$$

In this fashion, we induce inner products on all tensor powers of V and V^{*}. In particular, we get an inner product on endomorphisms of V, namely on the set of $(1,1)$-tensors $V^{*} \otimes V$. Recall for a basis $\left\{v_{i}\right\}$ of V, the linear map $T: V \rightarrow V$ such that

$$
T v_{i}=\sum_{j} v^{j}\left(T v_{i}\right) v_{j}=T_{i}^{j} v_{j}
$$

corresponds to the following element of $V^{*} \otimes V$,

$$
T=\sum_{i, j} T_{i}^{j} v^{i} \otimes v_{j}
$$

In particular, we calculate

$$
\begin{aligned}
\langle T, T\rangle & =\left\langle\sum_{i, j} T_{i}^{j} v^{i} \otimes v_{j}, \sum_{k, l} T_{k}^{l} v^{k} \otimes v_{l}\right\rangle \\
& =\sum_{i, j, k, l} T_{i}^{j} T_{k}^{l}\left\langle v^{i} \otimes v_{j}, v^{k} \otimes v_{l}\right\rangle \\
& =\sum_{i, j, k, l} T_{i}^{j} T_{k}^{l} g^{i k} g_{j l} \\
& =\sum_{i, j, k, l}\left(g^{i k} T_{k}^{l}\right)\left(T_{i}^{j} g_{j l}\right) \\
& =\sum_{i, l} T^{i l} T_{i l} .
\end{aligned}
$$

Alternatively, one may compute as

$$
\begin{aligned}
\langle T, T\rangle & =\sum_{i, j, k, l} T_{i}^{j}\left(T_{k}^{l} g^{i k}\right) g_{j l} \\
& =\sum_{i, j, l} T_{i}^{j} T^{i l} g_{j l} \\
& =\sum_{i, j} T_{i}^{j} T^{i}{ }_{j} .
\end{aligned}
$$

Following the previous computation, one sees the inner product on $(1,1)$-tensors is the trace inner product

$$
\langle S, T\rangle=\operatorname{tr}\left(S T^{*}\right)
$$

This inner product is stable under type change. For example, we define the $(2,0)$-version of T as

$$
T=\sum_{i, j, k} g^{i k} T_{k}^{j} v_{i} \otimes v_{j}
$$

and we compute

$$
\begin{aligned}
\langle T, T\rangle & =\left\langle\sum_{i, j, k} g^{i k} T_{k}^{j} v_{i} \otimes v_{j}, \sum_{l, m, n} g^{m l} T_{l}^{n} v_{m} \otimes v_{n}\right\rangle \\
& =\sum_{i, j, k, l, m, n} g^{i k} T_{k}^{j} g^{m l} T_{l}^{n}\left\langle v_{i} \otimes v_{j}, v_{m} \otimes v_{n}\right\rangle \\
& =\sum_{i, j, k, l, m, n} g^{i k} T_{k}^{j} g^{m l} T_{l}^{n} g_{i m} g_{j n} \\
& =\sum_{i, j, k, l, m, n}\left(g^{i k} T_{k}^{j}\right)\left(g_{j n} T_{l}^{n}\right)\left(g_{i m} g^{m l}\right) \\
& =\sum_{i, j, l} T^{i j} T_{l j} \delta_{i}^{l} \\
& =\sum_{i, j} T^{i j} T_{i j} .
\end{aligned}
$$

P. Tee, Department of Mathematics, University of Connecticut, Connecticut 06269 E-mail address, P. Tee: paul.tee@uconn.edu

