
Consequences of the First Variation Formula

Dion Mann

Abstract. These are notes on 1.3 from Colding and Minocozzi’s book “A
Course on Minimal Surfaces” [1]. I originally prepared these notes for the

Geometry and Analysis Student Seminar (GASS) at UConn.

1. The First Variation Formula

We briefly review section 1 of [1] and recall the first variation formula.
Given a real-valued C2-function u defined on an appropriate region Ω ⊆ R2,

recall its graph Γ(u) is defined to be the set of points (x, y, u(x, y)) ∈ Ω×R. There
is a functional AΓ : C2(Ω) → R given by

AΓ(u) =

∫
Ω

√
1 + ∥∇u∥2

called the area functional. Using techniques in the calculus of variations, one
finds the cirtical points of AΓ are precisely the functions u satisfying the so-called
minimal surface equation

(1.1) div

(
∇u√

1 + ∥∇u∥2

)
= 0.

In fact, it can be shown that the critical points are even area-minimizing. Conse-
quently, if u is a critical point of AΓ (i.e. u satisfies the minimal surface equation
(1.1)), then the surface Γ(u) is said to be a minimal surface.

The procedure described can be generalized to submanifolds Σ immersed in a
Riemannian manifold (M, g) with a covariant derivative ∇. Here Σ is said to be
a minimal submanifold if and only if its mean curvature vanishes identically (one
recovers (1.1) when M = Rn). This condition is equivalent to

(1.2) −
∫
Σ

⟨X,H⟩ =
∫
Σ

divΣ(X) = 0

for all compactly supported vector fields X along Σ vanishing on the boundary ∂Σ.
Equation (1.2) is called the first variation formula.

The purpose of these notes is to discuss three consequences of (1.2), in particular
the harmonocity of coordinates, the monotonicity formula, and the mean value
inequality.
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2. Coordinate Functions are Harmonic

Recall that a function u on Σ ⊆ Rn is said to be harmonic on Σ if ∆Σu = 0,
where ∆Σu = divΣ(∇Σu) is the Laplacian of u.

Proposition 2.1. Let Rn be coordinatized by (xi). Then Σk ⊆ Rn is a minimal
submanifold if and only if the restrictions of the xi to Σ are harmonic.

Proof. This is a direct consequence of the first variation formula, so we need
a compactly supported vector field along Σ that encodes information of the coor-
dinates. Let η ∈ C∞

cpt(Σ) be a compactly supported smooth function such that
η|∂Σ = 0. Consider the vector field ηei, where ei = ∇Σxi is the i-th coordinate
vector field along Σ. By the Leibniz rule,

divΣ(ηei) = ⟨∇Ση, ei⟩+ η divΣ(ei).

But ei is a constant vector field, so the above becomes divΣ(ηei) = ⟨∇Ση, ei⟩. The
first variation formula implies that

(2.1) −
∫
Σ

⟨ηei, H⟩ =
∫
Σ

divΣ(ηei) =

∫
Σ

⟨∇Ση,∇Σxi⟩.

On the other hand, the Divergence theorem gives

(2.2) 0 =

∫
∂Σ

η⟨∇Σxi, N⟩ =
∫
Σ

divΣ(η∇Σxi) =

∫
Σ

⟨∇Ση,∇Σxi⟩+
∫
Σ

η ∆Σxi

where N is the unique outward-pointing unit vector on ∂Σ. Combining (2.2) with
(2.1), we have the following condition:∫

Σ

⟨ηei, H⟩ =
∫
Σ

η ∆Σxi.

Since the statement “Σ is minimal” is equivalent to H = 0, this just says that Σ is
minimal if and only if the restriction of xi to Σ is harmonic.

□

This result can be used to uncover many properties of minimal submanifolds,
especially regarding its shape. First recall that the (Euclidean, closed) half-spaces
H(a, e) ⊆ Rn are the sets given by

H(a, e) = {x ∈ Rn : ⟨x, e⟩ ≤ a}
for each a ∈ R and e ∈ Sn−1. Geometrically, the half-space H(a, (1, 0)) in R2 is
the half plane left of the line x = a, and one views in general H(a, e) as rotations
of this plane along a circle.

Definition 2.2. Let K ⊆ Rn be a compact subset. Define the convex hull
of K, denoted by Conv(K), to be the (convex) set

Conv(K) =
⋂

H(a,e)⊇K

H(a, e).

The convex hull of a compact set K is the smallest convex set containing K.
Compact minimal submanifolds satisfy a so-called convex hull property:

Corollary 2.3 (due to R. Osserman [2]). Let Σk ⊆ Rn be a compact minimal
submanifold. Then Σ is contained entirely within the convex hull of its boundary
∂Σ.
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Proof. Fix an e ∈ Sn−1. Define a function pe : Σ → R given by pe(x) = ⟨x, e⟩.
By proposition (2.1), one has ∆Σpe = 0. The maximum principle implies the
existence of a number a ∈ R such that pe(x) ≤ a for all x ∈ Σ. Equivalently, if
x ∈ Σ, then ⟨x, e⟩ ≤ a, hence Σ ⊆ Conv(∂Σ).

□

This gives a bit of an idea on how minimal submanifolds are shaped. Further-
more, the harmonicity of coordinate functions also have something to say about
the homology of Σ:

Corollary 2.4. Let Σk ⊆ Rn be a minimal submanifold. Then for each
1 ≤ i ≤ k, there are homomorphisms Fi : Hk−1(Σ) → R given by

Fi([γ]) =

∫
γ

⟨nγ , ei⟩

where nγ is the oriented conormal vector to γ (i.e., nγ is normal to γ while tangent
to Σ).

Proof. Linearity is clear, so we just show that the Fi are well-defined as maps.
Given homologous (k− 1)-chains γ1 and γ2, there is a k-chain Ω with ∂Ω = γ1− γ2
by definition. Geometrically, one views Ω as a region in Rn contained within Σ
bounded by γ1 and γ2. By proposition 2.1 and an application of the Divergence
theorem,

0 =

∫
Ω

∆Σxi =

∫
∂Ω

⟨ei, N⟩ =
∫
γ1

⟨ei, nγ1⟩ −
∫
γ2

⟨ei, nγ2⟩.

Therefore Fi([γ1]) = Fi([γ2]), proving the claim.
□

One can, roughly, view Fi([γ]) as a measure of the total flux in the i-th direction
through the part of Σ determined by γ.

3. The Monotonicity Formula

We move to another corollary to the first variation formula, called the mono-
tonicity formula. The formula asserts that the volume and density (which will later
be defined) of minimal submanifolds obey a monotony law. First, we recall without
proof the coarea formula, which is roughly a generalized Fubini’s theorem:

Theorem 3.1. Let h be a real-valued proper Lipschitz function on a manifold
Σ. Then for any locally integrable function f : Σ → R, the following holds for all
t ∈ R :

(3.1)

∫
{h≤t}

f∥∇Σh∥ =

∫ t

−∞

∫
h=τ

f dτ

Finally, it is helpful to make the following observation. Let Σk ⊆ Rn be a
minimal submanifold; in particular, recall that divΣY

N = −
〈
Y N , H

〉
= 0 for any

vector field Y . Together with the fact that ∇ejxi = ⟨ej , ei⟩ = δij , one has:

(3.2) ∆Σ∥x∥2 = 2divΣ(x1, . . . , xn)
⊤ = 2divΣ(x1, . . . , xn) = 2k.

We now state and prove the monotonicity formula.
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Proposition 3.2 (Monotonicity Formula). Let Σk ⊆ Rn be a minimal sub-
manifold. Fix a point x0 ∈ Rn. Finally, put Br = Bn

r (x0) for the n-ball about
x0 of radius r > 0 and V (A) for the volume of the subset A ⊆ Rn. Then for all
0 < s < t, the following holds:

(3.3)
V (Bt ∩ Σ)

tk
− V (Bs ∩ Σ)

sk
=

∫
(Bt−Bs)∩Σ

∥(x− x0)
N∥2

∥x− x0∥k+2
.

Proof. There is a distance function d : Σ → R given by d(x) = ∥x − x0∥.
Note that

V (Bs ∩ Σ) = V {x ∈ Σ : ∥x− x0∥ < s} = V {d ≤ s}.
The advantage of working with d is that an application of the coarea formula
is suddenly more feasible. Differentiating one of the terms on the LHS of the
monotonicity formula gives

(3.4)
d

ds

(
s−kV {d ≤ s})

)
= −ks−k−1V {d ≤ s}+ s−k d

ds
V {d ≤ s}.

We move to express each term in (3.4) in terms of x − x0. By (3.2) and Stoke’s
theorem,

(3.5) 2kV {d ≤ s} =

∫
{d≤s}

∆Σd
2 =

∫
{d=s}

〈
∇Σd

2, N
〉
= 2

∫
{d=s}

∥(x− x0)
⊤∥.

On the other hand, the coarea formula gives

V {d ≤ s} =

∫
{d≤s}

1 =

∫
{d≤s}

1

∥∇Σd∥
· ∥∇Σd∥ =

∫ s

0

∫
d=τ

1

∥∇Σd∥
dτ.

Now since ∥∇Σd∥ = ∥∇Σ(∥x− x0∥)∥ = ∥(x− x0)
⊤∥/∥x− x0∥, this becomes

(3.6) V {d ≤ s} =

∫ s

0

∫
{d=τ}

∥x− x0∥
∥(x− x0)⊤∥

dτ.

Combining (3.5) and (3.6) into (3.4) and using the fact that the integration region
is along d(x) = ∥x− x0∥ = s, one computes

d

ds

(
s−kV {d ≤ s}

)
= −s−k−1

∫
{d=s}

∥(x− x0)
⊤∥+ s−k · s

s

∫
{d=s}

∥x− x0∥
∥(x− x0)⊤∥

= s−k−1

∫
{d=s}

(
∥x− x0∥2

∥(x− x0)⊤∥
− ∥(x− x⊤

0 )∥
)

= s−k−1

∫
{d=s}

∥(x− x0)
N∥2

∥(x− x0)⊤∥

=

∫
{d=s}

∥(x− x0)
N∥2

∥(x− x0)⊤∥ · ∥x− x0∥k+1

It is helpful here to multiply the integrand by ∥∇Σd∥/∥∇Σd∥:

d

ds

(
s−kV {d ≤ s}

)
=

∫
{d=s}

∥(x− x0)
N∥2

∥(x− x0)⊤∥ · ∥x− x0∥k+1
· ∥(x− x0)

⊤∥
∥x− x0∥

· 1

∥∇Σd∥

=

∫
{d=s}

∥(x− x0)
N∥2

∥x− x0∥k+2
· 1

∥∇Σd∥
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Finally, integrate along s and apply the coarea formula once more:

s−kV {d ≤ s} =

∫ s

0

∫
{d=τ}

∥(x− x0)
N∥2

∥x− x0∥k+2
· 1

∥∇Σd∥
dτ =

∫
{d≤s}

∥(x− x0)
N∥2

∥x− x0∥k+2
.

The case for the term t−kV {d ≤ t} is identical. Subtracting these two results in
the monotonicity formula.

□

Let Σk ⊆ Rn be a minimal submanifold and fix an x0 ∈ Rn. Define a function
Θx0 : R>0 → R by the formula

Θx0(s) =
V (Bn

s (x0) ∩ Σ)

V (Bk
s (x0))

.

Note that the denominator is the volume of the k-ball, while in the numerator one
takes the n-ball and intersects with the k-dimensional submanifold Σ.

Definition 3.3. Let x0 be a point in a minimal submanifold. The density at
x0 is the quantity Θx0 = lims→0 Θx0(s).

Intuitively, one expects the density at any point x0 of a minimal submanifold
Σ to be at least 1, with equality holding if and only if Σ is dilation invariant about
x0. Indeed, we have the following due to the monotonicity formula:

Corollary 3.4. Let Σk ⊆ Rn be a minimal submanifold with a fixed point
x0 ∈ Rn. Then the following hold:

(1) The function Θx0
(s) is monotone nondecreasing.

(2) The function Θx0
(s) is constant if and only if Σ is dilation invariant about

x0.
(3) If x0 ∈ Σ, then Θx0(s) ≥ 1.

Proof. These are immediate consequences of the monotonicity formula. Note
also that ∥(x− x0)

N∥ = 0 for x ∈ Σ precisely when Σ is conical about x0.
□

One can extend definition 3.3 to include points in Rn, thereby allowing dis-
cussion of the density at points outside of Σ. This gives a real-valued function on
Rn defined by x 7→ Θx. As a consequence of the monotonicity formula, minimal
submanifolds have the property that the density does not rise “too abruptly”. More
precisely:

Corollary 3.5. Let Σk ⊆ Rn be a minimal submanifold. Then the function
Θ : Rn → R given by Θ(x) = Θx is upper semicontinuous.

Proof. Fix an x ∈ Rn and let (xj)
∞
j=0 be any sequence of points converging

to x. By corollary 3.4, given a ε > 0, one finds an s > 0 such that Θx ≥ Θx(2s)− ε.
Now choose a δ > 0 such that δ < s and

Θx ≥
(
1 +

δ

s

)k

Θx(2s)− 2ε.

For a point xj with ∥x− xj∥ < δ, the following holds by corollary 3.4:

Θxj
≤ Θxj

(s) ≤
V (Bn

s+δ(x) ∩ Σ)

V (Bk(x))
=

(
1 +

δ

s

)k

Θx(s+ δ) ≤ Θx + 2ε

In particular lim supxj→x Θxj
≤ Θx, so Θ is upper semicontinuous. □
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4. The Mean Value Inequality

In the previous section, we proved that minimal submanifolds have monotonic-
ity in volume. It turns out that it is possible to generalize the monotonicity formula
to include weighted volume, resulting in the mean value inequality. We conclude
with the statement and proof of this.

Given a subset A ⊆ Rn and a weight function w defined on A, denote by Vw(A)
the volume of A with weight w. More precisely we have

Vw(A) =

∫
A

w.

Proposition 4.1 (Mean Value Inequality). Let Σk ⊆ Rn be a minimal sub-
manifold. Given a function w on Σ, the following holds for all 0 < s < t:

Vw(Bt ∩ Σ)

tk
− Vw(Bs ∩ Σ)

sk
=

∫
(Bt−Bs)∩Σ

w
∥xN∥2

∥x∥k+2

+
1

2

∫ t

s

τ−k−1

∫
Bτ∩Σ

(τ2 − ∥x∥2)∆Σw dτ

Observe that the mean value inequality reduces to the monotonicity formula
when w = 1.

Proof. The proof is similar to the proof of the monotonicity formula. There-
fore, we outline most of this proof and write a few of the different aspects in detail.
Consider once again the expression

d

ds

(
s−kVw(Bs ∩ Σ)

)
= −ks−k−1Vw(Bs ∩ Σ) + s−k d

ds
Vw(Bs ∩ Σ).

As before, we attempt to rewrite the RHS in terms of x. First it is helpful to write
down the following:

divΣ
(
w∇Σ∥x∥2 − ∥x∥2∇Σw

)
=
〈
∇Σw,∆Σ∥x∥2

〉
+ w∆Σ∥x∥2

−
〈
∇Σ∥x∥2,∇Σw

〉
− ∥x∥2∆Σw

= w∆Σ∥x∥2 − ∥x∥2∆Σw.

Using this along with the Divergence theorem, one computes

2kVw(Bs ∩ Σ) =

∫
Bs∩Σ

w∆Σ∥x∥2

=

∫
Bs∩Σ

∥x∥2∆Σw +

∫
Bs∩Σ

divΣ
(
w∇Σ∥x∥2 − ∥x∥2∇Σw

)
=

∫
Bs∩Σ

∥x∥2∆Σw +

∫
∂Bs∩Σ

〈
w∇Σ∥x∥2, N

〉
−
∫
∂Bs∩Σ

〈
∥x∥2∇Σw,N

〉
=

∫
Bs∩Σ

∥x∥2∆Σw +

∫
∂Bs∩Σ

2w∥x⊤∥ − s2
∫
∂Bs∩Σ

⟨∇Σw,N⟩

=

∫
Bs∩Σ

∥x∥2∆Σw + 2

∫
∂Bs∩Σ

w∥x⊤∥ − s2
∫
Bs∩Σ

∆Σw.

Now all that’s left is to follow the same steps as in the proof for the monotonicity
formula.

□
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