
Notes on Minimal Surfaces

Paul Tee

1 (5.26.23) Bernstein’s Theorem

Follows 1.4 - 1.5 of [CM11].

Theorem 1.0.1 (Bernstein). If u : R2 → R is an entire solution to the
minimal surface equation, then its graph must be an affine plane.

Remark 1.0.2. It’s interesting to compare this statement to Liouville theorem,
namely bounded (or sublinear) entire harmonic functions are constant.

1.1 Preliminaries

For Σ2 ⊂ R3 be orientable and ν be a choice of unit normal on Σ. We will
define two maps, which will be identified with each other [Figure 1]. The first

Figure 1: Weingarten map is the differential of Gauss map
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Figure 2: The full Hessian of r

map is the Weingarten map,

TΣ → TΣ

X 7→ ∇Xν.

Note that changing this to the (0, 2) version gives the second fundamental
form

II(X, Y ) := ⟨∇Xν, Y ⟩.
In particular, the Weingarten map is symmetric, real-valued so it diagonalizes
with eigenvalues κ1, κ2. The second map is the differential of the Gauss map,

dν : TΣ → TS2

X 7→ dν(X).

The two maps can be identified since any orthonormal frame E1, E2 on Σ can
be carried to one on S2, so there is no point in distinguishing the codomain
between TΣ or TS2. Furthermore assuming Σ is minimal forces κ2 = −κ1
and gives anti-conformality of the Gauss map,

|dν|2 = |II|2 = κ21 + κ22 = −2κ1κ2 = −2 det(dν). (1)

We briefly remark that det(dν) is a common definition of Gauss curvature.
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We observe if Σ is given as the regular level set of a function r : R3 → R,
then its second fundamental form is proportional the surface Hessian. Recall
for X, Y ∈ X(Σ),

∇2
Σr(X, Y ) := ⟨∇X∇r, Y ⟩.
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Since the gradient is perpendicular to level sets, the claim follows

II(X, Y ) = ⟨∇X
∇u
|∇u|

, Y ⟩ = ∇2
Σu(X, Y )

|∇u|
+X|∇u|⟨∇u, Y ⟩︸ ︷︷ ︸

= 0

.

We will apply this observation to Bernstein’s theorem via the following pro-
cedure which turns any graph into a level set. Let u : R2 → R be a solution
to the minimal surface equation, and consider Σ = graph u ⊂ R3 with the
induced metric. Consider the signed distance function r in a neighborhood
of Σ,

r : Σ× (−ϵ, ϵ) → R
(x, t) 7→ u(x)− t.

We compute the norm of the gradient of r and the Hessian of r as

|∇r| =
√
(∂tr)2 + |∇Σr|2 =

√
1 + |∇u|2,

∇2
Σr = ∇2

Σu.

The Hessian identity follows since all derivatives in the direction of Σ fall
onto u [Figure 2]. Therefore, the second fundamental form can be expressed
purely in terms of u,

Π =
∇2

Σr

|∇r|
=

∇2
Σu√

1 + |∇u|2
.

In particular, if the second fundamental form vanishes, then so must the
Hessian, so u will graph an affine plane.

1.2 Logarithm Cutoff

We begin our quest of showing II ≡ 0 on Σ := graph u by showing that the
total curvature is bounded by the energy of any cutoff function.

Lemma 1.2.1. Let u : Ω ⊂ R2 → R be a solution to the minimal surface
equation. For any non-negative, Lipschitz1 function η with support contained
in Ω× R, ∫

Σ

η2|II|2 ≤ C

∫
Σ

|∇Ση|2.
1It is helpful to recall Rademacher’s theorem, which tells us that Lipschitz functions

are differentiable almost everywhere.
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Proof. Let ω be the area form on S2 and consider the upper hemisphere.
Consider the 1-form α such that dα = ω on the upper hemisphere. Equation
1 implies

|II|2dΣ = −2 det(dν)dΣ = 2ν∗ω = 2dν∗α.

Furthermore, in local coordinates we have (ν∗α)i = (dν)jiαj, so Cauchy-
Schwarz implies

|ν∗α| ≤ C|II|,
with C = C(α). In total,∫
Σ

η2|II|2dΣ = 2

∫
Σ

η2dν∗α = −4

∫
Σ

ηdη ∧ ν∗α︸ ︷︷ ︸
Stokes & η2 vanishes on ∂Σ

≤ 4C

∫
Σ

η|∇Ση||II|dΣ ≤ 4C

(∫
Σ

η2|II|2dΣ
) 1

2
(∫

Σ

|∇Ση|2dΣ
) 1

2

,

and so we reincorporate to get∫
Σ

η2|II|2dΣ ≤ 16C2

∫
Σ

|∇Ση|2dΣ.

■

Remark 1.2.2. I’m not convinced that non-negativity of η is used in any
meaningful way in the above proof. This assumption can probably be dropped.

In light of Lemma 1.2.1, game now is to find a sequence of non-negative
Lipschitz cutoff functions ηN tending to 1, with energy tending to 0. Let us
first work heuristically. Define radial cutoff functions [Figure 3] for r = |x|,

ηN(r) :=


1 r ≤ eN

2− log(r)
N

eN < r ≤ e2N

0 e2N < r.

Observe ηN → 1 as N → ∞. We compute |∇ηN | = 1
Nr

,2 and by co-area
formula we compute∫

R2

|∇ηN |2 =
∫ ∞

0

∫
∂Br

|∇ηN |2dσdr =
∫ e2N

eN

2πr

(Nr)2
dr =

2π

N
.

2In fact, you probably start at this and define η from here.
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Figure 3: ηN for N = 1, 1.5, 2

In particular, the energy of ηN vanishes as N → ∞. The same computation
holds with linear perimeter growth

Length(∂Br) ≤ Cr,

as we may basically repeat the above argument∫
Σ

|∇ηN |2 =
∫ ∞

0

∫
∂Br

|∇ηN |2dσdr =
∫ e2N

eN

Length(∂Br)

(Nr)2
dr ≤ C

N
.

However, what’s important is that the same conclusion holds under the as-
sumption of quadratic area growth

Area(Br) ≤ Cr2.

This is important since by a calibration argument (Corollary 1.2 of [CM11]),
a minimal surface Σ2 ⊂ R3 will always obey a quadratic area growth (with
C = 2π). To prove the energy bound under this assumption, first observe
|∇ηN | is monotonically decreasing, so

sup
B

ek
\B

ek−1

|∇Nη|2 = |∇ηN |2
∣∣∣∣
∂B

ek−1

= N−2e2−2k.

We break up the “middle section” into concentric annuli and compute∫
Σ

|∇ηN |2 ≤
2N∑

k=N+1

∫
B

ek
\B

ek−1

N−2e2−2kdσ

≤
2N∑

k=N+1

N−2e2−2kArea(Bek \Bek−1) ≤
2N∑

k=N+1

CN−2e2 =
Ce2

N
.
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Remark 1.2.3. Let’s take a second to summarize what happened. The energy
integrand decays like r−2, while the domain grows like r2. To get the desired
decay rate, you associate a constant N with the energy integrand, which pops
out as N−2. This combats the linear N that pops out of the sum over the
annuli, leaving a final rate of N−1.

Remark 1.2.4. This whole heuristic can obviously be sharpened. Two imme-
diate directions are replacing Cauchy-Schwarz with Hölder in Lemma 1.2.1,
and requiring a decay on the energy of ηN of N−α for any α > 0. Generalizing
in these directions is the content of Chapter 2.
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Inspired by these heuristic computations, we perform a similar logarithmic
cutoff trick to conclude Bernstein’s theorem.

Corollary 1.2.5. If u : Ω ⊂ R2 → R is a solution to the minimal surface
equation, κ > 1 and Ω contains a ball of radius κR centered at the origin,
then ∫

B√
κR∩Σ

|II|2 ≤ C

log κ
.

Remark 1.2.6. Note that the parameter R is needed as we require κ > 1 for
taking log. But for Bernstein purposes, we can think of fixing R = 1 and
κ→ ∞.

Proof. Define η : R3 → R with support contained in BκR. Again for r = |x|,
define

η(r) :=


1 r ≤

√
κR

2− 2 log( r
R
)

log κ

√
κR < r ≤ κR

0 κR < r.

We compute |∇Ση| ≤ 2
r log κ

, and assuming for simplicity log
√
κ = log κ/2 is

6



an integer,∫
B√

κR∩Σ
|II|2 ≤

∫
Σ

η2|II|2 ≤ C

∫
Σ

|∇Ση|2 ≤
4C

(log κ)2

∫
BκR∩Σ

r−2dr︸ ︷︷ ︸
quadratic decay

≤ 4C

(log κ)2

log κ∑
k=log

√
κ

∫
B

ekR
\B

ek−1R
∩Σ
r−2dr

≤ 4C

(log κ)2

log κ∑
k=log

√
κ

(ek−1R)−2 · 2π(ekR)2︸ ︷︷ ︸
quadratic area growth

=
4C

(log κ)2

log κ∑
k=log

√
κ

2e2π =
4πe2C

log κ
.

■

2 (6.16.23) PDE Aspects of Stability

Follows 1.8.3 of [CM11]. It is interesting to compare the contents of this
section with [Cha84, Ch 1.5].

2.1 Principal Eigenvalue of Stability

In this section, we mimic some classical computations with the Laplacian
with the stability operator. Recall the (linear, elliptic) stability operator

Lη := ∆Ση + |A|2η +Ric(ν, ν)η,

for Σn−1 ⊂ Mn a stable 2-sided minimal hypersurface with unit normal ν
and X = ην. The convention on the Laplacian is that that its eigenvalues
are negative.

Recall that stability of a minimal hypersuface Σ is the requirement that the
operator L is negative semi-definite (or equivalently, −L is positive semi-
definite) over all subdomains Ω ⊂ Σ. Equivalently, for fixed Ω, we phrase
stability as non-negativity of the principal (Dirichlet) eigenvalue λ1, defined
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as Rayleigh quotient

λ1 := inf

{
−
∫
ηLη∫
η2

: η ∈ C∞
0 (Ω)

}
= inf{−

∫
ηLη : η ∈ C∞

0 (Ω),

∫
η2 = 1}.

(2)

Here and throughout, all integrals will be taken over a bounded domain
Ω ⊂ Σ. Thus, our goal is to understand when λ1 ≥ 0.

We first show (2) admits a weak formulation, and run the standard elliptic
machinery. By integration by parts, for every η ∈ C∞

0 (Ω)∫
∆Ση = −

∫
|∇Ση|2, (3)

thereby weakly turning the 2nd order term of L into a 1st order one. Therefore,
consider the problem of minimizing the Rayleigh quotient

I := inf

{∫
|∇Ση|2 − |A|2η2 − Ric(N,N)η2∫

η2
: η ∈ W 1,2

0 (Ω)

}
over the larger function space W 1,2

0 (Ω).

Lemma 2.1.1. In the notation above, λ1 = I. Furthermore, if a weak solu-
tion u ∈ W 1,2(Ω) achieves equality

λ1 =

∫
|∇Σu|2 − |A|2u2 − Ric(ν, ν)u2∫

u2
,

then automatically u ∈ C∞
0 (Ω) and −Lu = λ1u.

Proof. It is clear that λ1 ≥ I by (3) and C∞
0 (Ω) ⊂ W 1,2

0 (Ω) (since taking
infimum over a larger space could only possibly give a lower value). For
simplicity, denote the 0th order term of L by

V (x) := |A|2(x) + Ric(ν, ν)(x).

For the other direction, consider {ηj} ⊂ W 1,2
0 (Ω) a minimizing sequence to I

so that

I +
1

j
≥
∫
|∇Σηj|2 − V η2j∫

η2j
. (4)
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Observe the left hand side of (4) is preserved under scaling (ηj 7→ cjηj),
so assume

∫
η2j = 1. Since the sequence {ηj} is minimizing, it is bounded;

sequential Banach-Alaoglu implies that it weakly converges to a function
η ∈ W 1,2

0 . Recall that inclusion W 1,2
0 (Ω) ⊂ L2(Ω) is compact by Rellich for

p ≤ n3 and Morrey for p > n as in [Eva10, Ch 5.7]. Therefore, the convergence
to η is strong in L2; in particular

lim inf

∫
η2j =

∫
η2 = 1.

It follows from taking liminf on both sides of (4) that

I ≥ lim inf

∫
|∇Σηj|2 − lim inf

∫
V η2j

≥
∫

|∇Ση|2 −
∫
V η2.

In the second inequality, the first term follows from weak lower semi-continuity
of energy. For the second terms first note that V ∈ L∞(Ω) since it is contin-
uous up to the boundary, and by Hölder V η2j and V η2 are integrable. The

second term thus follows since ηj
L2

−→ η, then η2j
L1

−→ η2. The continuous eval-
uation pairing L1(Ω)∗×L1(Ω) → R can be identified by Riesz representation
theorem as

(V, η) 7→
∫
V η

for V ∈ L∞(Ω) and η ∈ L1(Ω). Equality follows by weak convergence of
η2j → η2. In particular, definition of I forces η ∈ W 1,2

0 (Ω) to be a minimizer,
i.e.

I =

∫
|∇Ση|2 − V η2.

We now apply a Dirichlet principle to show such a minimizer satisfies Lη = Iη
weakly; smoothness of η is immediate from elliptic regularity. Consider a
perturbation of (the weak form of) L at the minimizer η by ψ ∈ C∞

0 (Ω);

3For the p = n case, we need to argue with the contravariant Lp inclusion on bounded
domains. We know that W 1,n ⊂ W 1,q for each q ∈ [1, n) by applying the above to a
function and its weak first derivative. We then use Rellich to get a compact embedding
of W 1,q ⊂ Ln for q close enough to n. Close enough means choosing q < n to solve the
inequality n2 < 2nq, which comes from looking at n < q∗ = nq

n−q .
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by density, the same analysis will hold for ψ ∈ W 1,2
0 (Ω). As minimizers are

critical points,

0 =
d

dt

∣∣∣∣
t=0

1

2

∫
|∇Σ(η + tψ)|2 − V (η + tψ)2 =

∫
⟨∇Ση,∇Σψ⟩ − V ηψ. (5)

The RHS of (5) is the statement that η weakly solves L. Now, restrict to
variations ψ ∈ W 1,2

0 (Ω) such that∫
ηψ = 0. (6)

Given ϕ ∈ W 1,2
0 (Ω), set

ψ := ϕ− η

(∫
ηϕ

)
︸ ︷︷ ︸
a constant!

.

ψ satisfies condition (6) as∫
ηψ =

∫
ηϕ−

(∫
η2
)

︸ ︷︷ ︸
=1

(∫
ηϕ

)
= 0.

Plugging in this choice of ψ into (5),

0 =

∫
⟨∇Ση,∇Σψ⟩ − V ηψ

=

∫
⟨∇Ση,∇Σ(ϕ− η

(∫
ηϕ

)
)⟩ − V η(ϕ− η

(∫
ηϕ

)
)

=

∫
⟨∇Ση,∇Σϕ⟩ −

(∫
ηϕ

)
|∇Ση|2 − V ηϕ+ V η2

(∫
ηϕ

)
.

In particular, we conclude the proof since∫
⟨∇Ση,∇Σϕ⟩ − V ηϕ =

(∫
ηϕ

)∫
|∇Ση|2 − V η2 =

(∫
ηϕ

)
I.

■
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Combining the previous result with Harnack’s inequality, we get an analog
of Courant’s nodal domain theorem. In particular, the first eigenfunction of
L has multiplicity one.

Lemma 2.1.2. If u is a smooth function on Ω that vanishes on ∂Ω and
Lu = −λ1u, then u cannot change sign.

Proof. Assume u ̸≡ 0. It is easy to show |u| ≥ 0 is also a W 1,2
0 solution, and

Harnack implies that |u| > 0. ■

2.2 Minimal Graphs are Stable

The following is due to Barta.

Lemma 2.2.1. Let Σ be a 2-sided minimal hypersurface, and Ω ⊂ Σ. If there
exists a positive solution u > 0 on Ω to Lu = 0, then Ω is stable.

Proof. Positivity of u allows us to consider log u, and we make a computation
∆Σ log u. Let i run through geodesic normal coordinates at a point on Σ,

∆Σ log u =
∑
i

∂i∂i log u =
∑
i

∂i

(ui
u

)
=
∑
i

−
(ui
u

)2
+
uii
u

=
∑
i

−(log u)2i +
∆Σu

u
= −|∇Σ log u|2 − V.

The last equality uses Lu = 0 on the second term; by positivity of u, all
denominators are valid. For f ∈ C∞

0 (Ω), we see∫
f 2V +

∫
f 2|∇Σ log u|2 = −

∫
f 2∆Σ log u

=

∫
∇Σf

2 · ∇Σ log u

= 2

∫
f∇Σf · ∇Σ log u

≤ 2

∫
|f ||∇Σf ||∇Σ log u|

≤
∫

|∇Σf |2 +
∫
f 2|∇Σ log u|2
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with the last inequality using |a · b| ≤ |a|2
2

+ |b|2
2
. From integration by parts

follows stability. ■

As a corollary, we show minimal graphs are automatically stable, following
[Sun16, Cor 6.1].

Corollary 2.2.2. Minimal graphs are stable.

Proof. For Σ = graph u with unit normal ν, we claim

⟨ν, ∂z⟩ = ⟨ (−ux, uy, 1)√
1 + |∇u|2

, ∂z⟩ =
1√

1 + |∇u|2

is a (positive) Jacobi field. Since the ambient manifold is R3, the Ricci term
in the stability operator vanishes, and it suffices to show

∆Σ⟨ν, ∂z⟩ = −|A|2⟨ν, ∂z⟩.

Let i, j ∈ {1, 2} run through geodesic normal coordinates at a point on Σ. We
pause to collect some basic observations used in the subsequent computation.

1. ∂z is a parallel vector field (i.e. ∇∂z ≡ 0).

2. Recall the Bianchi identity for Aij := ⟨∇iν, ∂j⟩,

Aij,i = ∂i⟨∇iν, ∂j⟩
= ⟨∇i∇iν, ∂j⟩+ ⟨∇iν,∇i∂j⟩
= ⟨∇j∇iν, ∂i⟩+ ⟨∇iν,∇j∂i⟩
= ∂j⟨∇iν, ∂i⟩ = Aii,j.

In the third equality, the first term follows from symmetry of the Hes-
sian, as we may locally solve ∇iν = ∇u for a function u. The second
follows from the torsion-free property of the connection.

3. Christoffel symbols vanish along the surface Σ, so

∇i∂j = ⟨∇i∂j, ν⟩ν = −Aijν.
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We use the above facts to compute

∆Σ⟨ν, ∂z⟩ =
∑
i

∂i∂i⟨ν, ∂z⟩ =
∑
i

∂i⟨∇iν, ∂z⟩

=
∑
i

∂i⟨
∑
j

Aij∂j, ∂z⟩

=
∑
i,j

⟨Aij,i∂j, ∂z⟩+
∑
i,j

⟨Aij∇i∂j, ∂z⟩

=
∑
i,j

⟨Aii,j∂j, ∂z⟩︸ ︷︷ ︸
=0

−|A|2⟨ν, ∂z⟩

= −|A|2⟨ν, ∂z⟩.

The last equality follows from minimality of Σ,

∑
i,j

Aii,j =
∑
j

∂j

(∑
i

⟨∇iν, ∂i⟩

)
=
∑
j

∂jH ≡ 0.

■
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