Moving Frames

Dedicated to Moving Frames of summer '23.

1 Conventions

We always work on Riemannian manifolds with the Levi-Civita connection.

- No index balancing - we'll use all lower indices and explicit summations.
- E_{i} 's denote (orthonormal) frames, Θ_{i} 's denote (their dual) coframes, $\omega_{i j}$'s denote the connection 1 -forms, and $\Omega_{i j}$'s denote the curvature 2 -forms.
- Tildes will denote the "new" (the unknown), while no tildes denote the "old" (the known).
- For non-products, Latin will be used as a general index.

For products, we use both Latin and Greek alphabets to separate out individual factors. In such cases, we will use p, q to denote indices which run over both Latin and Greek; in particular, do not think of p, q as Latin indices. ${ }^{1}$

- We define the connection 1 -forms as

$$
\nabla_{X} E_{i}=\sum_{j} \omega_{i j}(X) E_{j}
$$

and curvature 2-forms as

$$
R(X, Y) E_{i}=\sum_{j} \Omega_{i j}(X, Y) E_{j}
$$

for R the (1,3) curvature tensor. Thus, the structure equations [Propositions 3.2 and 3.3] are
$-(\mathbf{C 1}) d \Theta_{i j}=\sum_{j} \omega_{i j} \wedge \Theta_{j}$.
$-(\mathbf{C 2}) \Omega_{i j}=d \omega_{i j}-\sum_{k} \omega_{i k} \wedge \omega_{k j}$.

[^0]Both $\omega_{i j}$ and $\Omega_{i j}$ are anti-symmetric in the indices with respect to an orthonormal frame [Proposition 3.4].

- Under this convention, the negative of the scalar curvature is the trace of both indices. Namely, if R is the scalar curvature, then

$$
-R=\sum_{i, j} \Omega_{i j}\left(E_{i}, E_{j}\right)
$$

2 Computations

We open with an easy example to illustrate the basic framework.
Proposition 2.1. Show that the curvature tensors are additive under a product metric.
Proof. Let $\left\{\Theta_{i}\right\}$ (resp. $\left\{\Theta_{\alpha}\right\}$) denote a coframe on M (resp. N). Then, the induced coframe on $\left(M \times N, g_{M}+g_{N}\right)$ is given by $\left\{\tilde{\Theta}_{i}, \tilde{\Theta}_{\alpha}\right\}$, where $\tilde{\Theta}_{i}=\Theta_{i}$ and $\tilde{\Theta}_{\alpha}=\Theta_{\alpha}$.
We use first structure equation to derive the new connection 1-forms. We compute from the M factor

$$
\sum_{j} \tilde{\omega}_{i j} \wedge \tilde{\Theta}_{j}+\sum_{\alpha} \tilde{\omega}_{i \alpha} \wedge \tilde{\Theta}_{\alpha}=d \tilde{\Theta}_{i}=d \Theta_{i}=\underbrace{\sum_{j} \omega_{i j} \wedge \Theta_{j}}_{(\mathrm{C} 1) \text { on } M}=\sum_{j} \omega_{i j} \wedge \tilde{\Theta}_{j} .
$$

A similar computation on the N factor gives

$$
\sum_{i} \tilde{\omega}_{\alpha i} \wedge \tilde{\Theta}_{i}+\sum_{\beta} \tilde{\omega}_{\alpha \beta} \wedge \tilde{\Theta}_{\beta}=d \tilde{\Theta}_{\alpha}=\sum_{\beta} \omega_{\alpha \beta} \wedge \tilde{\Theta}_{\beta}
$$

From these two equations, we guess the new connection 1-forms as

$$
\tilde{\omega}_{p q}=\left\{\begin{array}{ll}
\frac{2}{}(p, q) \\
\hline \omega^{M} & \text { Latin } \\
\omega^{N} & \text { Greek } \\
0 & \text { Bilingual }
\end{array} \Longleftrightarrow \tilde{\omega}=\left(\begin{array}{c|c}
\omega^{M} & 0 \\
\hline 0 & \omega^{N}
\end{array}\right)\right.
$$

By uniqueness of the connection 1-forms, this guess is correct. We move on to compute the new connection 2 -form from the second structure equation. A moment's glance at (C2) reveals that there are no mixed terms $\tilde{\Omega}_{i \alpha}$, as $\tilde{\omega}$'s have no mixed terms. Another moment's glance reveals

$$
\tilde{\Omega}=\left(\begin{array}{c|c}
\Omega^{M} & 0 \\
\hline 0 & \Omega^{N}
\end{array}\right)
$$

and so the assertion follows.
Let's move on to a harder example that reveals some general difficulties.

Proposition 2.2. Show that the scalar curvature \tilde{R} of a warped product metric $g_{B}+f^{2} g_{F}$ on $B \times_{f} F$ for $f: B \rightarrow \mathbb{R}^{>0}$ is

$$
\tilde{R}=R^{B}+\frac{R^{F}}{f^{2}}-n(n-1)\left(\frac{|\nabla f|}{f}\right)^{2}-\frac{2 n \Delta f}{f}
$$

for $n=\operatorname{dim} F$, and $R^{B}\left(\right.$ resp. $\left.R^{F}\right)$ the scalar curvatures on B (resp. $\left.F\right)$.
Proof. Let $\left\{E_{i}\right\}$ (resp. $\left\{E_{\alpha}\right\}$) denote a frame on B (resp. F). Let $\left\{\Theta_{i}\right\}$ (resp. $\left\{\Theta_{\alpha}\right\}$) denote the dual coframe on $\underset{\tilde{\Theta}}{ }$ (resp. F). Then, the induced coframe on $B \times_{f} F$ is given by $\left\{\tilde{\Theta}_{i}, \tilde{\Theta}_{\alpha}\right\}$, where $\tilde{\Theta}_{i}=\Theta_{i}$ and $\tilde{\Theta}_{\alpha}=f \Theta_{\alpha}$.

We compute (C 1) from the B factor

$$
\begin{equation*}
\sum_{i} \tilde{\omega}_{i j} \wedge \tilde{\Theta}_{j}+\sum_{\alpha} \tilde{\omega}_{i \alpha} \wedge \tilde{\Theta}_{\alpha}=d \tilde{\Theta}_{i}=d \Theta_{i}=\underbrace{\sum_{j} \omega_{i j} \Theta_{j}}_{\text {(C1) on } B}=\sum_{j} \omega_{i j} \tilde{\Theta}_{j} \tag{1}
\end{equation*}
$$

From this equation alone, we may be tempted to guess $\tilde{\omega}_{i j}=\omega_{i j}$ and $\tilde{\omega}_{i \alpha}=0$. The second guess is wrong - we get mixed terms in the new connection 1-forms. This is not surprising, as we would otherwise run the previous argument to get that the curvature tensors of a warped product are additive (and independent of f). If this were true, we would never care about the geometry of warped products. The newly revealed phenomenon is the following fact,

$$
\operatorname{ker}\left(-\wedge \tilde{\Theta}_{\alpha}\right)=\text { multiples of } \tilde{\Theta}_{\alpha} .
$$

In other words, we only pin down $\tilde{\omega}_{\alpha}$ up to a multiple of $\tilde{\Theta}_{\alpha}$, i.e. for some function ϕ_{i},

$$
\tilde{\omega}_{i \alpha}=\phi_{i} \tilde{\Theta}_{\alpha} .
$$

The exact function ϕ_{i} will be pinned down with (C1) from the F factor. We compute

$$
\begin{align*}
\sum_{i} \tilde{\omega}_{\alpha i} \wedge \tilde{\Theta}_{i}+\sum_{\beta} \tilde{\omega}_{\alpha \beta} \wedge \tilde{\Theta}_{\beta} & =d \tilde{\Theta}_{\alpha}=d\left(f \Theta_{\alpha}\right)=d f \wedge \Theta_{\alpha}+f d \Theta_{\alpha} \\
& =\sum_{i}\left(E_{i} f\right) \Theta_{i} \wedge \Theta_{\alpha}+f \underbrace{\sum_{\beta} \omega_{\alpha \beta} \wedge \Theta_{\beta}}_{(\mathrm{C} 1) \text { on } F} \tag{2}\\
& =\sum_{i}-\left(E_{i} f\right) \Theta_{\alpha} \wedge \tilde{\Theta}_{i}+\tilde{S}_{\beta} \omega_{\alpha \beta} \wedge \tilde{\Theta}_{\beta}
\end{align*}
$$

Therefore, $\tilde{\omega}_{\alpha i}=-\left(E_{i} f\right) \Theta_{\alpha}$ and so $\phi_{i}=\frac{E_{i} f}{f}$. Equations (1) and (2) together give the new connection 1-forms as

We move on the compute (C2) with Latin indices

$$
\begin{aligned}
\tilde{\Omega}_{i j} & =d \tilde{\omega}_{i j}-\sum_{p} \tilde{\omega}_{i p} \wedge \tilde{\omega}_{p j} \\
& =\underbrace{d \omega_{i j}-\sum_{k} \omega_{i k} \wedge \omega_{k j}}_{(\text {C } 2) \text { on } B}-\sum_{\alpha} \tilde{\omega}_{i \alpha} \wedge \tilde{\omega}_{\alpha j} \\
& =\Omega_{i j}+\underbrace{\sum_{p}\left(E_{i} f\right) \Theta_{\alpha} \wedge\left(E_{j} f\right) \Theta_{\alpha}}_{=0} \\
& =\Omega_{i j}
\end{aligned}
$$

with Greek indices

$$
\begin{aligned}
\tilde{\Omega}_{\alpha \beta} & =d \tilde{\omega}_{\alpha \beta}-\sum_{p} \tilde{\omega}_{\alpha p} \wedge \tilde{\omega}_{p \beta} \\
& =\underbrace{d \omega_{\alpha \beta}-\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}}_{\text {(C2) on } F}-\sum_{i} \tilde{\omega}_{\alpha i} \wedge \tilde{\omega}_{i \beta} \\
& =\Omega_{\alpha \beta}+\sum_{i}\left(E_{i} f\right)^{2} \Theta_{\alpha} \wedge \Theta_{\beta} \\
& =\Omega_{\alpha \beta}+|\nabla f|^{2} \Theta_{\alpha} \wedge \Theta_{\beta}
\end{aligned}
$$

and with bilingual indices

$$
\begin{aligned}
\tilde{\Omega}_{i \alpha} & =d \omega_{i \alpha}-\sum_{p} \tilde{\omega}_{i p} \wedge \tilde{\omega}_{p \alpha} \\
& =d\left(\left(E_{i} f\right) \Theta_{\alpha}\right)-\sum_{j} \tilde{\omega}_{i j} \wedge \tilde{\omega}_{j \alpha}-\sum_{\beta} \tilde{\omega}_{i \alpha} \wedge \tilde{\omega}_{\beta \alpha} \\
& =\left(E_{j} E_{i} f\right) \Theta_{j} \wedge \Theta_{\alpha}+\underbrace{\left(E_{i} f\right) d \Theta_{\alpha}-\sum_{\beta}\left(E_{i} f\right) \Theta_{\beta} \wedge \omega_{\beta \alpha}-\sum_{j} \omega_{i j} \wedge\left(E_{j} f\right) \Theta_{\alpha}}_{=0} \\
& =\underbrace{\left.\sum_{j}\left(E_{j} E_{i}\right) \Theta_{j}-\left(E_{j} f\right) \omega_{i j}\right) \wedge \Theta_{\alpha}}_{\text {Proposition 3.1 }} \\
& =\nabla^{2} f\left(-, E_{i}\right) \wedge \Theta_{\alpha}
\end{aligned}
$$

Altogether, we have

$$
\tilde{\Omega}_{p q}=\left\{\begin{array}{ll}
& (p, q) \\
\overline{\Omega_{i j}} & (i, j) \\
\Omega_{\alpha \beta}+|\nabla f|^{2} \Theta_{\alpha} \wedge \Theta_{\beta} & (\alpha, \beta) \\
\nabla^{2} f\left(-, E_{i}\right) \wedge \Theta_{\alpha} & (i, \alpha)
\end{array} \Longleftrightarrow\right.
$$

$$
\tilde{\Omega}_{p q}=\left(\begin{array}{c|c}
\Omega_{i j}^{B} & \ldots \tilde{\Omega}_{i \alpha}=\nabla^{2} f\left(-, E_{i}\right) \wedge \Theta_{\alpha} \ldots \\
\vdots & \\
\tilde{\Omega}_{\alpha i}=-\nabla^{2} f\left(-, E_{i}\right) \wedge \Theta_{\alpha} & \Omega_{\alpha \beta}^{F}+|\nabla f|^{2} \Theta_{\alpha} \wedge \Theta_{\beta} \\
\vdots &
\end{array}\right)
$$

Tracing over both indices yields

$$
\begin{aligned}
-\tilde{R} & =\sum_{p, q} \tilde{\Omega}_{p q}\left(\tilde{E}_{p}, \tilde{E}_{q}\right) \\
& =\sum_{i, j} \tilde{\Omega}_{i j}\left(\tilde{E}_{i}, \tilde{E}_{j}\right)+\sum_{\alpha, \beta} \tilde{\Omega}_{\alpha \beta}\left(\tilde{E}_{\alpha}, \tilde{E}_{\beta}\right)+2 \sum_{i, \alpha} \tilde{\Omega}_{i \alpha}\left(\tilde{E}_{i}, \tilde{E}_{\alpha}\right) \\
& =-R^{B}-\frac{R^{F}}{f^{2}}\left(\frac{|\nabla f|}{f}\right)^{2} \underbrace{\sum_{\alpha \neq \beta}\left(\Theta_{\alpha} \wedge \Theta_{\beta}\right)\left(E_{\alpha}, E_{\beta}\right)}_{\alpha \neq \beta}+2 \sum_{i, \alpha}\left(\nabla^{2} f\left(-, E_{i}\right) \wedge \Theta_{\alpha}\right)\left(E_{i}, \frac{E_{\alpha}}{f}\right) \\
& =-R^{B}-\frac{R^{F}}{f^{2}}+n(n-1)\left(\frac{|\nabla f|}{f}\right)^{2}+2 \sum_{\alpha} \frac{\Delta f}{f} \\
& =-R^{B}-\frac{R^{F}}{f^{2}}+n(n-1)\left(\frac{|\nabla f|}{f}\right)^{2}+\frac{2 n \Delta f}{f}
\end{aligned}
$$

Multiplying through by -1 gives the result.
Exercise 2.3. (Scalar curvature of Schwarzschild) For $f=f(r)$ and $a>0$, show the scalar curvature of $\frac{d r^{2}}{f}+r^{2} d \Omega_{\mathbb{S}^{n-1}}^{2}$ on $[a, \infty) \times \mathbb{S}^{n-1}$ is

$$
\frac{n-1}{r^{2}}\left((n-2)(1-f)-r f^{\prime}\right)
$$

where $d \Omega_{\mathbb{S}^{n-1}}^{2}$ is the metric on the unit sphere.
Next, we use moving frames to compute the behavior of the scalar curvature under a conformal change.
Proposition 2.4. Let g be a metric on M^{n} with $n \geq 3$, then for $u: M \rightarrow \mathbb{R}^{>0}$ then $\tilde{g}:=u^{\frac{4}{n-2}} g$ has scalar curvature

$$
\tilde{R}=-u^{\frac{n+2}{n-2}}\left(\frac{4(n-1)}{(n-2)} \Delta u-R u\right)
$$

Proof. Take $\left\{E_{i}\right\}$ an orthonormal frame for g, and let $\left\{\Theta_{i}\right\}$ be the induced coframe. Since orthogonality is preserved under a conformal change, $\left\{\tilde{\Theta}_{i}\right\}$ is the induced coframe for \tilde{g},
where $\tilde{\Theta}_{i}=u^{\frac{2}{n-2}} \Theta_{i}$. We compute the first structure equation as

$$
\begin{aligned}
d \tilde{\Theta}_{i} & =d\left(u^{\frac{2}{n-2}} \Theta_{i}\right) \\
& =d\left(u^{\frac{2}{n-2}}\right) \wedge \Theta_{i}+u^{\frac{2}{n-2}} d \Theta_{i} \\
& =\frac{2}{n-2} u^{\frac{4-n}{n-2}} d u \wedge \Theta_{i}+\sum_{j} \omega_{i j} \wedge \tilde{\Theta}_{j} \\
& =\sum_{j}\left(-\frac{2}{n-2} u^{-1}\left(E_{j} u\right) \Theta_{i}+\omega_{i j}\right) \wedge \tilde{\Theta}_{j}
\end{aligned}
$$

As with before,

$$
\tilde{\omega}_{i j} \equiv \omega_{i j}-\frac{2}{n-2} u^{-1}\left(E_{j} u\right) \Theta_{i} \quad \bmod \tilde{\Theta}_{j}
$$

We don't have a second factor to pin down the constant multiple; instead we just need to satisfy anti-symmetry of the connection coefficients. This leads us to anti-symmetrize the second factor as

$$
\tilde{\omega}_{i j}=\omega_{i j}-\frac{2}{n-2} u^{-1}\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right) .
$$

We move on to compute the curvature 2-form. Set $f:=\frac{2}{n-2} u^{-1}$, so $f^{\prime}=-\frac{2}{n-2} u^{-2}$ and $f^{2}=\left(\frac{2}{n-2}\right)^{2} u^{-2}$. Therefore,

$$
-\frac{2 f^{\prime}}{n-2}=f^{2}
$$

We move on to compute the second structure equation as

$$
\begin{aligned}
\tilde{\Omega}_{i j}= & d \omega_{i j} \underbrace{-d\left(f\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)\right)}_{(\mathrm{I})} \\
& \left.-\sum_{k} \omega_{i k}-f\left(\left(E_{k} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{k}\right)\right) \\
& =\underbrace{d \omega_{i j}-\sum_{k} \omega_{i k} \wedge \omega_{k j}+(\mathrm{I})}_{(\mathrm{C} 2) \text { on } M} \\
& +\underbrace{f \sum_{k} \omega_{i k} \wedge\left(\left(E_{j} u\right) \Theta_{k}-\left(E_{k} u\right) \Theta_{j}\right)}_{(\mathrm{III})} \\
& +\underbrace{f \sum_{k}\left(\left(E_{k} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{k}\right) \wedge \omega_{k j}}_{\left.\left.\left(E_{j} u\right) \Theta_{k}-\left(E_{k} u\right) \Theta_{j}\right)\right)} \\
& \underbrace{\left.\left.-f^{2} \sum_{k}\left(\left(E_{k} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{k}\right)\right) \wedge\left(\left(E_{j} u\right) \Theta_{k}-\left(E_{k} u\right) \Theta_{j}\right)\right)} \\
= & \Omega_{i j}+(\mathrm{I})+(\mathrm{II})+(\mathrm{III})+(\mathrm{IV}) .
\end{aligned}
$$

Since this is a long computation, we break it into parts.

- $(\mathrm{I})=-d\left(f\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)\right)$
$=-f^{\prime} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)$
$-f\left(\sum_{k}\left(E_{k} E_{j} u\right) \Theta_{k} \wedge \Theta_{i}-\left(E_{k} E_{i} u\right) \Theta_{k} \wedge \Theta_{j}\right.$

$$
\left.+\left(E_{j} u\right) d \Theta_{i}-\left(E_{i} u\right) d \Theta_{j}\right)
$$

$$
=-f^{\prime} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)-f \sum_{k}\left(E_{k} E_{j} u\right) \Theta_{k} \wedge \Theta_{i}
$$

$$
+f \sum_{k}\left(E_{k} E_{i} u\right) \Theta_{k} \wedge \Theta_{j}-f\left(E_{j} u\right) d \Theta_{i}+f\left(E_{i} u\right) d \Theta_{j}
$$

$$
=\underbrace{\frac{f^{2}(n-2)}{2} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)}_{(* *)} \underbrace{-f \sum_{k}\left(E_{k} E_{j} u\right) \Theta_{k} \wedge \Theta_{i}}_{(* * *)}
$$

$$
\underbrace{+f \sum_{k}\left(E_{k} E_{i} u\right) \Theta_{k} \wedge \Theta_{j}}_{(* * * *)} \underbrace{-f\left(E_{j} u\right) d \Theta_{i}+f\left(E_{i} u\right) d \Theta_{j}}_{(*)}
$$

- (II) $=f \sum_{k} \omega_{i k} \wedge\left(\left(E_{j} u\right) \Theta_{k}-\left(E_{k} u\right) \Theta_{j}\right)$

$$
=\underbrace{f\left(E_{j} u\right) d \Theta_{i}}_{(*)} \underbrace{-f \sum_{k}\left(E_{k} u\right) \omega_{i k} \wedge \Theta_{j}}_{(* * * *)}
$$

- $(\mathrm{III})=f \sum_{k}\left(\left(E_{k} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{k}\right) \wedge \omega_{k j}$

$$
\begin{aligned}
& =f \sum_{k} \omega_{j k} \wedge\left(\left(E_{k} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{k}\right) \\
& =\underbrace{f \sum_{k}\left(E_{k} u\right) \omega_{j k} \wedge \Theta_{i}}_{(* * *)} \underbrace{-f\left(E_{i} u\right) d \Theta_{j}}_{(*)} .
\end{aligned}
$$

- (IV) $\left.\left.=-f^{2} \sum_{k}\left(\left(E_{k} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{k}\right)\right) \wedge\left(\left(E_{j} u\right) \Theta_{k}-\left(E_{k} u\right) \Theta_{j}\right)\right)$

$$
\begin{aligned}
& =-f^{2} \sum_{k}\left(\left(E_{k} u\right)\left(E_{j} u\right) \Theta_{i} \wedge \Theta_{k}-\left(E_{k} u\right)^{2} \Theta_{i} \wedge \Theta_{j}+\left(E_{i} u\right)\left(E_{k} u\right) \Theta_{k} \wedge \Theta_{j}\right. \\
& =f^{2}\left(E_{j} u\right) \sum_{k}\left(E_{k} u\right) \Theta_{k} \wedge \Theta_{i}-f^{2}\left(E_{i} u\right) \sum_{k}\left(E_{k} u\right) \Theta_{k} \wedge \Theta_{j}+f^{2}|\nabla u|^{2} \Theta_{i} \wedge \Theta_{j} \\
& =f^{2}\left(E_{j} u\right) d u \wedge \Theta_{i}-f^{2}\left(E_{i} u\right) d u \wedge \Theta_{j}+f^{2}|\nabla u|^{2} \Theta_{i} \wedge \Theta_{j} \\
& =\underbrace{f^{2} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)}_{(* *)}+f^{2}|\nabla u|^{2} \Theta_{i} \wedge \Theta_{j}
\end{aligned}
$$

Recombining (I)-(IV), we see that [Proposition 3.1]

1. $(*)=0$,
2. $(* *)=\frac{n f^{2}}{2} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)$,
3. $(* * *)=-f \nabla^{2} u\left(-, E_{j}\right) \wedge \Theta_{i}$,
4. $(* * * *)=f \nabla^{2} u\left(-, E_{i}\right) \wedge \Theta_{j}$.

In total, the new curvature 2-form is

$$
\begin{aligned}
\tilde{\Omega}_{i j}= & \Omega_{i j}+\underbrace{f\left(\nabla^{2} u\left(-, E_{i}\right) \wedge \Theta_{j}-\nabla^{2} u\left(-, E_{j}\right) \wedge \Theta_{i}\right)}_{\text {(i) }} \\
& +\underbrace{\frac{n f^{2}}{2} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)}_{\text {(ii) }}+\underbrace{f^{2}|\nabla u|^{2} \Theta_{i} \wedge \Theta_{j}}_{\text {(iii) }} .
\end{aligned}
$$

We now trace over i, j to compute the negative of the scalar curvature. Again, we compute each part separately. Recalling that $\tilde{E}_{i}=u^{\frac{-2}{n-2}} E_{i}$, we compute

1. $\operatorname{Tr}(\mathrm{i})=u^{\frac{-4}{n-2}} f \sum_{i, j}\left(\nabla^{2} u\left(-, E_{i}\right) \wedge \Theta_{j}-\nabla^{2} u\left(-, E_{j}\right) \wedge \Theta_{i}\right)\left(E_{i}, E_{j}\right)$

$$
\begin{aligned}
& =u^{\frac{-4}{n-2}}\left(\frac{2}{n-2} u^{-1}\right) 2 \sum_{i \neq j} \nabla^{2} u\left(E_{i}, E_{i}\right) \cdot \Theta_{j}\left(E_{j}\right) \\
& =\frac{4(n-1)}{n-2} u^{-\frac{n+2}{n-2}} \Delta u
\end{aligned}
$$

2. $\operatorname{Tr}(\mathrm{ii})=u^{\frac{-4}{n-2}} \frac{n f^{2}}{2} \sum_{i, j} d u \wedge\left(\left(E_{j} u\right) \Theta_{i}-\left(E_{i} u\right) \Theta_{j}\right)\left(E_{i}, E_{j}\right)$
$=u^{-\frac{4}{n-2}} n f^{2} \sum_{i \neq j}-\left(E_{j} u\right)\left(\Theta_{i} \wedge d u\right)\left(E_{i}, E_{j}\right)$
$=u^{-\frac{4}{n-2}} n f^{2} \sum_{i \neq j}-\left(E_{j} u\right)^{2} \Theta_{i}\left(E_{i}\right)$
$=-u^{-\frac{4}{n-2}} f^{2}|\nabla u|^{2} n(n-1)$,
3. $\operatorname{Tr}(\mathrm{iii})=u^{\frac{-4}{n-2}} f^{2}|\nabla u|^{2} \sum_{i, j}\left(\Theta_{i} \wedge \Theta_{j}\right)\left(E_{i}, E_{j}\right)$
$=u^{\frac{-4}{n-2}} f^{2}|\nabla u|^{2} n(n-1)$.
Since $\operatorname{Tr}(\mathrm{ii})+\operatorname{Tr}(\mathrm{iii})=0$, we see that

$$
-\tilde{R}=-R u^{\frac{-4}{n-2}}+\frac{4(n-1)}{n-2} u^{-\frac{n+2}{n-2}} \Delta u .
$$

The result follows after some basic algebraic manipulations.

3 Derivations

Proposition 3.1. Let $\left\{E_{i}\right\}$ denote an orthonormal frame and $\left\{\Theta_{i}\right\}$ its dual coframe. Let f denote a function.

1. $\nabla f=\sum_{i}\left(E_{i} f\right) E_{i}$.
2. $\nabla^{2} f\left(-, E_{i}\right)=\sum_{j}\left(E_{j} E_{i} f\right) \Theta_{j}-\left(E_{j} f\right) \omega_{i j}$.

Proof. 1. $\left\langle\nabla f, E_{k}\right\rangle=E_{k} f \Longrightarrow \nabla f=\sum_{k}\left(E_{k} f\right) E_{k}$.
2. $\nabla^{2} f\left(E_{i}, E_{j}\right):=\left\langle\nabla_{E_{i}} \nabla f, E_{j}\right\rangle$

$$
\begin{aligned}
& =\left\langle\nabla_{E_{i}} \sum_{k}\left(E_{k} f\right) E_{k}, E_{j}\right\rangle \\
& =\sum_{k}\left\langle\left(E_{i} E_{k} f\right) E_{k}+\left(E_{k} f\right) \nabla_{E_{i}} E_{k}, E_{j}\right\rangle \\
& =E_{i} E_{j} f+\sum_{k, l}\left\langle\left(E_{k} f\right) \omega_{k l}\left(E_{i}\right) E_{l}, E_{j}\right\rangle \\
& =E_{i} E_{j} f+\sum_{k}\left(E_{k} f\right) \omega_{k j}\left(E_{i}\right) \\
& =\sum_{k}\left(E_{k} E_{j} f\right) \Theta_{k}\left(E_{i}\right)+\left(E_{k} f\right) \omega_{k j}\left(E_{i}\right) .
\end{aligned}
$$

Therefore, the Hessian with one slot filled is the following $(0,1)$-tensor

$$
\nabla^{2} f\left(-, E_{j}\right)=\sum_{k}\left(E_{k} E_{j} f\right) \Theta_{k}-\left(E_{k} f\right) \omega_{j k}
$$

Re-indexing gives the desired conclusion. As a bonus, we express the (0,2) Hessian as

$$
\nabla^{2} f=\sum_{k, l}\left(E_{k} E_{l} f\right) \Theta_{k} \otimes \Theta_{l}-\left(E_{k} f\right) \omega_{l k} \otimes \Theta_{l}
$$

Proposition 3.2. (Cartan's $1^{\text {st }}$ Structure Equation) Given an orthonormal coframe $\left\{\Theta_{i}\right\}$,

$$
d \Theta_{i}(X, Y)=\sum_{j} \omega_{i j} \wedge \Theta_{j}
$$

Proof. We begin by computing

$$
\nabla_{X} Y=\nabla_{X}\left(\sum_{j} \Theta_{j}(Y) E_{j}\right)=\sum_{j} X\left(\Theta_{j}(Y)\right) E_{k}+\sum_{j, k} \Theta_{j}(Y) \omega_{j k}(X) E_{k}
$$

Applying Θ_{i} to the equality gives

$$
\Theta_{i}\left(\nabla_{X} Y\right)=X\left(\Theta_{i}(Y)\right)+\sum_{j} \Theta_{j}(Y) \omega_{j i}(X)
$$

Now,

$$
\begin{aligned}
d \Theta_{i}(X, Y) & =X\left(\Theta_{i}(Y)\right)-Y\left(\Theta_{i}(X)\right)-\Theta_{i}([X, Y]) \\
& =\Theta_{i}\left(\nabla_{X} Y\right)-\sum_{j} \Theta_{j}(Y) \omega_{j i}(X)-\Theta_{i}\left(\nabla_{Y} X\right)+\sum_{j} \Theta_{j}(X) \omega_{j i}(Y)-\Theta_{i}([X, Y]) \\
& =\underbrace{\tau^{i}(X, Y)}_{=0}+\sum_{j} \omega_{i j}(X) \Theta_{j}(Y)-\omega_{i j}(Y) \Theta_{j}(X) \\
& =\sum_{j}\left(\omega_{i j} \wedge \Theta_{j}\right)(X, Y) .
\end{aligned}
$$

Proposition 3.3. (Cartan's $2^{\text {nd }}$ Structure Equation) For X, Y vector fields, $\left\{E_{i}\right\}$ an orthonormal frame, and R the $(1,3)$ curvature tensor, we have

$$
\Omega_{i j}=d \omega_{i j}-\sum_{k} \omega_{i k} \wedge \omega_{k j}
$$

Proof.

$$
\begin{aligned}
\sum_{j} \Omega_{i j}(X, Y) E_{j}= & R(X, Y) E_{i} \\
: & =\nabla_{X} \nabla_{Y} E_{i}-\nabla_{Y} \nabla_{X} E_{i}-\nabla_{[X, Y]} E_{i} \\
= & \sum_{j} \nabla_{X}\left(\omega_{i j}(Y) E_{j}\right)-\nabla_{Y}\left(\omega_{i j}(X) E_{j}\right)-\omega_{i j}([X, Y]) E_{j} \\
= & \sum_{j, k} X\left(\omega_{i j}(Y)\right) E_{j}+\omega_{i j}(Y) \omega_{j k}(X) E_{k}-Y\left(\omega_{i j}(X)\right) E_{j} \\
& -\omega_{i j}(X) \omega_{j k}(Y) E_{k}-\omega_{i j}([X, Y]) E_{j} \\
= & \sum_{j} d \omega_{i j}(X, Y) E_{j}+\sum_{k}\left(\sum_{j} \omega_{j k}(X) \omega_{i j}(Y)-\omega_{i j}(X) \omega_{j k}(Y)\right) E_{k} \\
= & \sum_{j} d \omega_{i j}(X, Y) E_{j}-\sum_{k} \sum_{j}\left(\omega_{i j} \wedge \omega_{j k}\right)(X, Y) E_{k} \\
= & \sum_{j} d \omega_{i j}(X, Y) E_{j}-\sum_{k}\left(\omega_{i k} \wedge \omega_{k j}\right)(X, Y) E_{j} .
\end{aligned}
$$

Following through with Θ_{j} gives the desired conclusion.
Proposition 3.4. Both $\omega_{i j}$ and $\Omega_{i j}$ are anti-symmetric in its indices.
Proof. By (C2), it is clear that $\Omega_{i j}$ is anti-symmetric in its indices if $\omega_{i j}$ is. Alternatively, one can argue using straight from the definition of $\Omega_{i j}$ via the anti-symmetry of the Riemann curvature tensor. To show symmetry of the connection 1-forms, for any vector field X,

$$
\nabla_{X} E_{i}=\sum_{j} \omega_{i j}(X) E_{j} \Longrightarrow\left\langle\nabla_{X} E_{i}, E_{j}\right\rangle=\omega_{i j}(X)
$$

By metric compatibility,

$$
0=X\left\langle E_{i}, E_{j}\right\rangle=\left\langle\nabla_{X} E_{i}, E_{j}\right\rangle+\left\langle E_{i}, \nabla_{X} E_{j}\right\rangle=\omega_{i j}(X)+\omega_{j i}(X)
$$

P. Tee, Department of Mathematics, University of Connecticut, Connecticut 06269

E-mail address, P. Tee: paul.tee@uconn.edu

[^0]: ${ }^{1}$ Sorry, but there's no canonical $3{ }^{\text {rd }}$ alphabet.

