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The following are the standard assumptions. On bounded domains Ω ⊂ Rn, will consider
2nd order (uniformly) elliptic operators

Lu :=
∑
i,j

aijuij +
∑
i

biui + cu = f,

where aij, bi, c are functions with regularity to be specified later. We assume symmetry on
the leading order coefficient terms aij = aji, and for all uniform ellipticity says ξ ∈ Rn, for
some positive constant λ > 0, ∑

i,j

aijξiξj ≥ λ|ξ|2.

The regularity of this approach will require our functions u, f to lie in appropriate Hölder
spaces. In this note, we will introduce a zoo of seminorms and norms on the way to proving
Schauder estimates, each of which will slightly differently exploit the fact that Ω is bounded.

In these notes, we will explore a priori bounds. It’s worth paying attention to how much
regularity we assume on u in the beginning. One way to produce such a solution is to first
find a fundamental solution Γ for L, then a solution will be given by Γ ∗ f . We will take this
route for L = ∆ equation.

In addition, notice the regularity on may be unexpected at first, namely we require f ∈ C0,α.
Counterexamples exist for f merely continuous even in the simplest case of L = ∆, as we
will discuss in Example 1.2.1.J J;9NAB8

To start, we introduce the standard Hölder spaces and their respective norms and semi-
norms. This approach will be pointwise in nature, compared to the integral-based approach
of Sobolev spaces last semester. Let α ∈ (0, 1). With respect to Ω, we have the pointwise
(and global) Hölder seminorms which detect pointwise (and uniform) α-Hölder continuity.
We may also define local α-Hölder continuity by asking for every compact K ⊂ Ω, that
[u]α;K is finite. In such a case, we say u is locally uniformly continuous.

1. (Pointwise) For xo ∈ Ω,

[u]0,α;xo := sup
x∈Ω

|u(x)− u(xo)|
|x− xo|α

.
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2. (Local) For all compact K ⊂ Ω,

sup
x ̸=y∈K

|u(x)− u(y)|
|x− y|α

< ∞.

3. (Global)

[u]0,α;Ω := sup
x ̸=y∈Ω

|u(x)− u(y)|
|x− y|α

.

As usual, global implies local implies pointwise. The above gives rise to Ck,α(Ω̄)(and Ck,α(Ω))
consisting of functions whose k-th order derivatives are uniformly (and locally uniformly)
continuous. In the global case, we get a seminorm as defined above. We can formally extend
this to α = 0, 1 which gives continuity and Lipschitz continuity respectively.

Hölder regularity gives a quantitative measurement of continuity. In fact, greater the α, the
more regularity we have.1 One can see this in the following illustrative example:

Example 0.0.1. The function f(x) = |x|β is α-Hölder continuous at x = 0 iff α ≤ β.

Proof. Let Ω be a domain containing 0. We compute

sup
x̸=0∈Ω

|f(x)− f(0)|
|x− 0|α

= sup
x ̸=0∈Ω

|x|β−α =

{
finite α ≤ β

∞ α > β.

■

Recall the Ck(Ω) seminorm is defined by measuring how large the kth derivative of u on Ω
is,

[u]k,0;Ω := |Dku|0;Ω := sup
x∈Ω,|β|=k

|Dβu|,

where β is a multi-index of length k. Similarly, we have the Ck(Ω) norm by adding the
largest of all the derivatives to order k,

|u|k,0;Ω :=
k∑

j=1

|Dju|0,Ω.

These definitions admit easy extensions to include α-Hölder regularity, namely we have the
standard (semi)norm of Ck,α(Ω̄).

1. [u]k,α;Ω := [Dku]0,α;Ω := sup|β|=k[D
βu].

2. |u|k,α;Ω := |u|Ck(Ω̄) + [u]k,α;Ω.

1We briefly mention that for k = 0, we have a Rellich-type result for Hölder spaces. Namely for 0 < α <
β ≤ 1, we have the compact inclusion C0,β(Ω) ⊂ C0,α(Ω).
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One may check that Ck,α(Ω̄) for 0 ≤ α < 1 are Banach spaces with the standard norms.
One should think of seminorms as taking the “highest degree” portion of the norm.

A short word on notation on our (semi)norms. From here on out, we drop the α from the
notation when α = 0, but never drop how many derivatives we take.

1 The Classical Proof

We unabashedly follow Chapters 2, 4, 6 of [GT01].

1.1 Reduction by Perturbation

Roughly speaking, the Schauder interior estimates tell us that we can bound the C2,α norm
of u in terms of the C0 norm of u and the C0,α norm of f. Explicitly, we have the following
theorem.

Theorem 1.1.1. (Interior Estimates)2 Given the standard assumptions, if u ∈ C2,α(Ω)
is a bounded solution to Poisson’s equation with f ∈ C0,α(Ω), and

|aij|(0)0,α;Ω, |b
i|(1)0,α;Ω, |c|

(2)
0,α;Ω ≤ Λ,

then the following estimate holds

|u|∗2,α;Ω ≤ C(|u|0;Ω + |f |(2)0,α;Ω).

We now introduce the relevant norms so the above statement is legible. The following
Hölder (semi)norms are weighted by their distances to the boundary. Namely for x ̸= y ∈ Ω,
consider

dx := d(x, ∂Ω) dx,y := min{dx, dy}.

We use the above two quantities to define the following (semi)norms. For α ∈ [0, 1] and
u ∈ Ck,α(Ω), we first define the 0-homogeneous (semi)norm of u ∈ Ck,α(Ω).

1. 0-homogeneous seminorm. For α = 0,

[u]∗k;Ω := sup
x∈Ω,|β|=k

dkx|Dβu(x)|.

For α > 0,

[u]∗k,α;Ω := sup
x ̸=y∈Ω,|β|=k

dk+α
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

.

2Compare Theorem 1.1.1 to the regularity statement of ([Eva10], pg 329, “Interior H2-regularity”).
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2. 0-homogeneous norm. For α = 0,

|u|∗k;Ω :=
k∑

j=0

[u]∗j,Ω.

For α > 0,
|u|∗k,α;Ω := |u|∗k,Ω + [u]∗k,α;Ω.

Next, we introduce the σ-homogeneous (semi)norm of u ∈ Ck,α(Ω) for σ ∈ R, generalizing
the above. The 0-homogeneous (semi)norms can obviously be recovered by setting σ = 0.

1. σ-homogeneous seminorm. For α = 0,

[u]
(σ)
k;Ω := sup

x∈Ω,|β|=k

dk+σ
x |Dβu(x)|.

For α > 0,

[u]
(σ)
k,α;Ω := sup

x ̸=y∈Ω,|β|=k

dk+α+σ
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

.

2. σ-homogeneous norm. For α = 0,

|u|(σ)k;Ω :=
k∑

j=0

[u]
(σ)
j,Ω.

For α > 0,
|u|(σ)k,α;Ω := |u|(σ)k,Ω + [u]

(σ)
k,α;Ω.

It’s worth pointing out that in the k = 0 case, the σ-homogeneous (semi)norms agree with
the standard ones. We show that the σ-inhomogenous norms enjoy a submultiplicative
property.3

Lemma 1.1.2. For σ + τ ≥ 0, we have

|fg|(σ+τ)
0,α;Ω ≤ |f |(σ)0,α;Ω · |g|(τ)0,α;Ω.

Proof. This is a Baby Rudin proof. Recall

|fg|(σ+τ)
0,α;Ω := sup

x ̸=y∈Ω

(
d+τ+α
x,y

|fg(x)− fg(y)|
|x− y|α

)
︸ ︷︷ ︸

(∗)

+sup
x∈Ω

(
dσ+τ
x |fg(x)|

)
︸ ︷︷ ︸

(∗∗)

.

3(6.11) of [GT01].
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We estimate the first term by

(∗) = sup
x ̸=y∈Ω

(
dσ+τ+α
x,y

|fg(x)− fg(y)|
|x− y|α

)
≤ sup

x ̸=y∈Ω

(
dσ+α+τ
x,y · dτ+α+σ

x,y

|f(x)| · |g(x)− g(y)|+ |g(y)| · |f(x)− f(y)|
|x− y|α

)
≤ sup

x ̸=y∈Ω

(
dτ+α+σ
x,y

|f(x)| · |g(x)− g(y)|
|x− y|α

)
+ sup

x ̸=y∈Ω

(
dτ+α+σ
x,y

|g(y)| · |f(x)− f(y)|
|x− y|α

)
≤ |f |(σ)0;Ω · [g](τ)0,α;Ω + |g|(τ)0;Ω · [f ](σ)0,α;Ω.

We estimate the second term by

(∗∗) = sup
x∈Ω

(dσ+τ
x |fg(x)|)

≤ sup
x∈Ω

(dσx|f(x)|) · sup
x∈Ω

(dτx|g(x)|)

= |f |(σ)0;Ω · |g|(τ)0;Ω

Combining the two estimates,

(∗) + (∗∗) = |f |(σ)0;Ω · [g](τ)0,α;Ω + |g|(τ)0;Ω · [f ](σ)0,α;Ω + |f |(σ)0;Ω · |g|(τ)0;Ω

≤ |f |(σ)0,α;Ω · |g|(τ)0,α;Ω

■

Throughout the course of the proof, we will frequently employ the interpolation inequalities.4

Unfortunately, we must omit the proof.

Lemma 1.1.3. Let u ∈ C2,α(Ω), then for any ε > 0, there exists a constant C = C(ε) such
that

[u]∗j,β;Ω ≤ |u|∗j,β;Ω ≤ C|u|0;Ω + ε[u]∗2,α;Ω,

where j = 0, 1, 2 and 0 ≤ α, β ≤ 1 and j + β < 2 + α.

We first reduce showing Schauder estimates from the general case to the case of constant
coefficients with no lower order terms.5

Proof. (of 1.1.1.) By using a proper, compact exhaustion, it suffices to show the equality
holds for every compact subset of Ω. By the interpolation inequalities 1.1.3, it suffices to
show the result where the LHS is [u]∗2,α;Ω. Thus, the relevant quantity to consider is

d2+α
xo,yo

|D2u(xo)−D2u(yo)|
|xo − yo|α

,

4(6.8) and (6.9) of [GT01].
5Theorem 6.2 of [GT01].
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for arbitrary xo, yo ∈ Ω. The idea here is to “freeze” one variable to reduce to the case of
constant coefficients with no lower order terms. Suppose dxo = dxo,yo , and consider∑

i,j

aij(xo)uij(x) = F (x),

where F :=
∑

i,j a
ij(xo)uij − Lu+ f . Assuming local Schauder estimates on the ball

|u|∗2,α;B ≤ C(|u|0;B + |F |(2)0,α;B),

where B := Bxo(
d
2
) where d := µdxo for some µ ≤ 1

2
we will choose later.

We now perform a near-and-far estimate on the frozen case, and we estimate the “junk”
term F in the sequel. For the near estimate, if yo ∈ B, we have the estimate(

d

2

)2+α |D2u(xo)−D2u(yo)|
|xo − yo|α

≤ C(|u|0;B + |F |(2)0,α;B).

Since
(
d
2

)2+α
=

(
dxoµ
2

)2+α

, we enlarge our domain to obtain the estimate

d2+α
xo

|D2u(xo)−D2u(yo)|
|xo − yo|α

≤ C

µ2+α

(
|u|0;Ω + |F |(2)0,α;B

)
.

For the far estimate, if yo ̸∈ B ⇐⇒ 2|xo − yo| ≥ d, and so (2|xo − yo|)α ≥ dα. Thus,

d2+α
xo

|D2u(xo)−D2u(yo)|
|xo − yo|α

=

(
d

µ

)2+α |D2u(xo)−D2u(yo)|
|xo − yo|α

≤ d2 · 2α

µ2+α
|D2u(xo)−D2u(yo)|

=
(dxoµ)

2 · 2α

µ2 · µα
|D2u(xo)−D2u(yo)|

≤
(
2

µ

)α (
d2xo

|D2u(xo)|+ d2yo|D
2u(yo)|

)
≤ 2α+1

µα
[u]∗2;Ω

≤ 4

µα
[u]∗2;Ω.

Combining the two estimates, we have

d2+α
xo

|D2u(xo)−D2u(yo)|
|xo − yo|α

≤ C

µ2+α

(
|u|0;Ω + |F |(2)0,α;B

)
+

4

µα
[u]∗2;Ω

The next step is to estimate the “junk” term |F |(2)0,α;B in terms of |u|0,Ω and [u]∗2,α;Ω. This is
a mildly annoying process, but straightforward conceptually. Specifically, we will estimate
the terms on the RHS of

|F |(2)0,α;B ≤
∑
i,j

|(aij(xo)− aij(x))uij|(2)0,α;B +
∑
i

|biui|(2)0,α;B + |cu|(2)0,α;B + |f |(2)0,α;B.
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We first provide a generic estimate local-to-global estimate for arbitrary g ∈ C0,α(Ω). For
x ∈ B, define d∂Bx := dist(x, ∂B) and d∂Bx,y := min{d∂Bx , d∂By }. Note that upon localizing to
B, we need to consider the distance to ∂B not to ∂Ω.6

|g|(2)0,α;B ≤ sup
x∈B

(d∂Bx )2 · sup
x∈B

|g(x)|+ sup
x ̸=y∈B

(d∂Bx,y)
2+α · sup

x ̸=y∈B

|g(x)− g(y)|
|x− y|α

= d2|g|0;B + d2+α[g]α;B

≤ |g|(2)0;Ω + [g]
(2)
α;Ω

≤
(

µ

1− µ

)2

|g|(2)0;Ω +

(
µ

1− µ

)2+α

[g]
(2)
α;Ω

≤ 4µ2|g|(2)0;Ω + 8µ2+α[g]
(2)
0,α;Ω

The third line follows since for any x ∈ B which comes from the computation

d = µdxo ≤ (1− µ)dxo ≤ dx.

Replacing d with dx is nondecreasing on B, so the result follows. The fifth line follows from

µ ≤ 1
2

=⇒
(

1
1−µ

)2

≤ 4 and
(

1
1−µ

)2+α

≤ 8.

We now apply estimates in detail to the principal term; the lower order terms are treated
similarly. By Lemma 1.1.2, we compute

|(aij(xo)− aij)uij|(2)0,α;B ≤ |aij(xo)− aij|(0)0.α;B · |uij|(2)0,α;B

≤ |aij(xo)− aij|(0)0.α;B︸ ︷︷ ︸
(∗)

·(4µ2[u]∗2;Ω + 8µ2+α[u]∗2,α;Ω).

We also estimate the local term (∗) by

(∗) = sup
x∈B

(
|aij(xo)− aij(x)|

)
+ sup

x ̸=y∈B

(
(d∂Bx,y)

α |aij(xo)− aij(x)− (aij(xo)− aij(y))|
|x− y|α

)
≤ sup

x ̸=xo∈B

(
|aij(xo)− aij(x)|

|x− xo|α
· |x− xo|α

)
+ dα[aij]0,α;B

≤ 2dα[aij]0,α;B

≤ 2(2µ)α[aij]∗0,α;Ω

≤ 4Λµα,

where the second to last inequality follows since d ≤ dx for all x ∈ B, and µ ≤ 1
2
. Altogether,

we find ∑
i,j

|aij(xo)− aij|(2)0,α;B ≤ 4n2Λµα(4µ2[u]∗2;Ω + 8µ2+α[u]∗2,α;Ω)

≤ 32n2Λµ2+α([u]∗2;Ω + µα[u]∗2,α;Ω)

≤ 32n2Λµ2+α(C(µ)|µ|0;Ω + 2µα[u]∗2,α;Ω),

6Caution, [GT01] uses dx for our d∂Bx , which may be a cause of confusion.
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where the last step follows from the interpolation inequalities 1.1.3. Similarly, we have the
estimates ∑

i

|biui|(2)0,α;B ≤ 8nΛµ2(C(µ)|u|0;Ω + µ2α[u]∗2,α;Ω),

|cu|(2)0,α;B ≤ 8Λµ2(C(µ)|u|0;Ω + µ2α[u]∗2,α;Ω),

|f |(2)0,α;Ω ≤ 8µ2|f |(2)0,α;Ω.

Altogether, we estimate F by

|F |(2)0,α;B ≤ Cµ2+2α[u]∗2,α;Ω + C(µ)(|u|0;Ω + |f |(2)0,α;Ω).

Combining the two steps and using the interpolation inequalities 1.1.3, we get

[u]∗2,α;Ω ≤ Cµα[u]∗2,α;Ω + C(µ)(|u|0;Ω + |f |(2)0,α;Ω).

Fixing µ so that Cµα ≤ 1
2
yields the desired result. ■

We quickly sketch a proof of Schauder estimates for the case of constant coefficients with no
lower order terms.7 Consider

L0u :=
∑
i,j

Aijuij,

where A := (Aij) ∈ GLn(R) is a constant matrix. In this case, we diagonalize A by an
orthogonal matrix8 to a diagonal one, turning L0u(x) = f(x) to ∆ũ(y) = f̃(y). Since our
transformations are all linear, the norms are equivalent, and so it suffices to prove Schauder
estimates for the Laplacian.

1.2 The Laplacian

We want to study the regularity problem Poisson equation of

∆u = f,

where f ∈ C0,α and u ∈ C2. Intuitively we expect that u should have two more derivatives
that f . However, counterexamples exist as shown in Example 1.2.1, for f merely bounded,
continuous.9 The exposition follows the following MSE answer [Won].

Example 1.2.1. Set P (x1, x2) := x1x2, ck := 1
k
, tk := 2k and η a smooth cutoff function

with respect to B0(1) ⊂ B0(2). We claim

f(x) :=
∞∑
k=1

ck∆(ηP )(tkx)

is a bounded, continuous function, with no C2 solution to the Poisson equation ∆u = f .

7Lemma 6.1 of [GT01].
8This follows by spectral theorem, since A is a symmetric, real-valued, nonsingular matrix.
9Adapted from Exercise 4.9 of [GT01].
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Proof. If we can show f is continuous, since f is compactly supported, then f will be
bounded. Even though f is defined as an infinite sum, note that for any x ̸= 0, there exists
K = K(|x|) such that

f(x) = cK∆(ηP )(tKx),

and so f is continuous away from the origin. This follows since ∆P = 0 when η ≡ 1 since P
is harmonic, and ηP = 0 for |tkx| ≥ 2. Since ∆(ηP ) is continuous,

|f(x)| ≤ Cck,

where C is a global constant. One easily checks f(0) = 0, so f is continuous at 0.

Define v on B0(2) as

v(x) :=
∞∑
k=1

ck
t2k
(ηP )(tkx),

which we claim is a solution to the Poisson equation. It suffices to show v is not C2 at the
origin. Assuming this is shown, suppose for contradiction w is a C2 solution around 0 to the
Poisson equation. Since v − w solves, say, weakly, the Dirichlet problem on B0(2), it is C

∞

by, say, Weyl’s lemma. Therefore, v = (v − w) + w is C2 around 0.10

We first argue v is continuous at the origin. This follows by the Weierstrass test after
recognizing the uniform bound

|ηP | ≤ C,

and that
∑

k
ck
t2k

< ∞. However, we show ∂2∂1v blows up at x → 0. For any x ̸= 0, for similar

reasons as above, the sum becomes finite. Therefore, for some K < ∞,

v12(x) =
K∑
k=1

ck∂1∂2(ηP )(tkx)

=
∑
K

ck(η12P + η1P2 + η2P1 + ηP12)

=
∑
K

ck(η12x1x2 + η1x1 + η2x2) +
∑
K

ck.

As x → 0, then K → ∞ and the last term blows up. ■

We first introduce the fundamental solution and some basic ideas surrounding it. The upshot
is that we obtain some estimates for future use, and Green’s representation formula,11 to
prove the following theorem.

Theorem 1.2.2. Let u ∈ C2(Ω) and f ∈ C0,α(Ω) such that ∆u = f . Then,

u = h+ w,

where h is some harmonic function, and w is the Newtonian potential of f .

10Every argument I’ve found online uses some asymptotic analysis at the origin. However, since v is
well-defined at the origin, I wonder if I can proceed as such.

11(2.16) of [GT01].
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Fix x ∈ Ω ⊂ Rn for n ≥ 2.12 Let ωn be the volume of the n-ball. Define the fundamental
solution on Ω− x as the following radial function about x:

Γ(x− y) :=

{
1

n(2−n)ωn
|x− y|n−2 n > 2

1
2π

log |x− y| n = 2.

We first obtain some basic estimates on Γ. The following derivatives will be taken with
respect to the variable x. For convenience, define

S(x) :=
n∑

k=1

(xk − yk)
2,

so that |x− y| = S
1
2 , and Si = 2(xi − yi). We calculate for n > 2,

Γi(x− y) =
1

n(2− n)ωn

(
2− n

2
S

2−n
2

−1 · 2(xi − yi)

)
=

1

nωn

|x− y|−n(xi − yi).

We calculate for n = 2,

Γi(x− y) =
1

2π

1
2
S− 1

2 · Si

S
1
2

=
1

2π
S−1(xi − yi)

=
1

2π
|x− y|−2(xi − yi).

Continuing, we calculate the second derivatives for n ≥ 2,

Γij(x− y) =
1

nωn

(
δijS

−n
2 + (xi − yi)

(
−n

2
S−n

2
−1 · 2(xj − yj)

))
=

S−n
2
−1

nωn

(
δijS

1 − n(xi − yi)(xj − yj)
)

=
|x− y|−n−2

nωn

(
δij|x− y|2 − n(xi − yi)(xj − yj)

)
.

Γ is indeed harmonic, since

∆Γ =
∑
i

Γii =
|x− y|−n−2

nωn

n∑
i=1

(δii|x− y|2 − n(xi − yi)
2) = 0.

For near future use, we record estimates on the fundamental solutions. Keep in mind that
the radial function |x− y|k is integrable in a neighborhood of x ∈ Rn iff k > −n.

12Careful! [GT01] uses “y” to denote the singularity in Chapter 2, but switches to “x” to denote the
singularity in Chapter 4.
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Proposition 1.2.3. Let ρ = |x− y| and for any multi-index β, we estimate

|DβΓ(ρ)| ≤ Cρ2−n−|β|,

where C = C(n, |β|). In fact, we calculate directly

Γ′(ρ) =
1

nωn

ρ1−n.

In Cartesian coordinates, we make the constant explicit to get

|Γi(x− y)| ≤ 1

nωn

|x− y|1−n,

|Γij(x− y)| ≤ 1

ωn

|x− y|−n.

Next, we recall Green’s identities. First, recall for g ∈ C∞(Ω) and X ∈ X(Ω),

div(gX) = ∇g ·X + g divX.

In the case X = ∇u for u ∈ C2(Ω), we get

div(g∇u) = ∇g · ∇u+ g ∆u.

Integrating and using divergence theorem yields Green’s first identity∫
Ω

∇g · ∇u+

∫
Ω

g∆u =

∫
∂Ω

(g∇u) · ν =

∫
∂Ω

g
∂u

∂ν
.

Switching the roles of g, u and subtracting,∫
Ω

g∆u− u∆g =

∫
∂Ω

g
∂u

∂ν
− u

∂g

∂ν

known as Green’s second identity. J J;9NAB8

We are in a position to give a proof of Theorem 1.2.2. In general, we call

w(x) := Γ ∗ f(x) =
∫
Ω

Γ(x− y)f(y)dy

the Newtonian potential of f .

Proof. (of 1.2.2.) We would like to use Green’s second identity for g = Γ. But due to the
singularity at x, we must use it instead for Ω−Bx(ρ), for small ρ. We compute∫

Ω−Bx(ρ)

Γ∆u =

∫
∂Ω

Γ
∂u

∂ν
− u

∂Γ

∂ν
+

∫
∂Bx(ρ)

Γ
∂u

∂ν
− u

∂Γ

∂ν︸ ︷︷ ︸
(∗)

.
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We show (∗) → u(x) as ρ → 0. Keeping in mind that Γ is radial, we proceed with estimating
the first term of (∗), ∫

∂Bx(ρ)

Γ
∂u

∂ν
= Γ(ρ) ·

∫
∂Bx(ρ)

∂u

∂ν

≤ C(n)ρ2−n · nωnρ
n−1 sup

∂Bx(ρ)

|Du|.

Since u ∈ C2(Ω), the exponents work out so that the last quantity vanishes as ρ → 0.13 For
the second term, we calculate by 1.2.3,14

−
∫
∂Bx(ρ)

u
∂Γ

∂ν
= Γ′(ρ)

∫
∂Bx(ρ)

u

=
1

nωnρn−1

∫
∂Bx(ρ)

u.

Since u is continuous, the last quantity goes to u(x) as ρ → 0. Altogether, sending ρ → 0
yields Green’s representation formula15

u(x) =

∫
∂Ω

u(y)
∂Γ

∂ν
(x− y)− Γ(x− y)

∂u

∂ν
(y)︸ ︷︷ ︸

h(x)

ds+

∫
Ω

Γ(x− y)∆u(x)︸ ︷︷ ︸
w(x)

dx.

We argue h is harmonic. Since ∂Ω is compact, we can commute ∂i past the integral. By IBP
we can put both ∂i derivatives on Γ, which is harmonic; by Clairaut’s theorem, we can put
∂i past any ∂ν terms. IBP leaves no boundary term since ∂(∂Ω) = ∂2Ω = 0. ■

We give explicit formulas for the first two derivatives of the Newtonian potential.16

Proposition 1.2.4. Suppose f is bounded, integrable in Ω with Newtonian potential w. Then
w ∈ C1(Rn) and its derivative given by the formula

wi(x) =

∫
Ω

Γi(x− y)f(y)dy.

Proof. Set v(x) :=
∫
Ω
Γi(x − y)f(y)dy. By the asymptotic estimates of 1.2.3 and the fact

that f is bounded, we find that v is well-defined. We consider the sequence wε := (Γηε) ∗ f ,
where ηε = η

(
|x−y|

ε

)
. Here, η ∈ C1(R) is a function such that

η(t) =

{
1 t ≥ 2

0 t ≤ 1,
and 0 ≤ η′ ≤ 2.

13At least for n > 2. But the n = 2 case follows similarly.
14Note since ν is outward pointing on Ω−B, then ν into B. However, ρ is defined so that it is positive as

you go away from x. Therefore, the sign changes.
15Observe for compactly supported u, the second term vanishes, while for harmonic u, the first term

vanishes.
16Lemmas 4.1 and 4.2 of [GT01].
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Therefore, wε(x) has the effect of doing nothing far from the singularity of Γ (at distances
|x− y| ≥ 2ε), and killing off the function near the singularity of Γ (at distances |x− y| ≤ ε).
Therefore, it is clear that wε(x) converges pointwise to w(x). Let K ⊂ Ω be compact, and
for any x ∈ K we compute for n > 2,17

|v(x)− wε
i (x)| =

∣∣∣∣∫
Ω

∂

∂xi
Γ(x− y)f(y)dy − ∂

∂xi

∫
Ω

Γ(x− y)ηε(x, y)f(y)dy

∣∣∣∣
=

∣∣∣∣∫
Be(2ε)

(
∂Γ(x− y)

∂xi
− ∂Γ(x− y) · ηε

∂xi

)
f(y)dy

∣∣∣∣
≤ sup

Bx(2ε)

|f |
∫
Be(2ε)

|DΓ|+
(
|DΓ|+ 2

εn
· εn−1|Γ|

)
dy

≤ sup |f |
nωn

∫
Bx(2ε)

2|x− y|1−n +
2

ε(2− n)
|x− y|2−ndy

=
sup |f |
nωn

(
2nωn(2ε)

n−1

(2ε)n−1

∫ 2ε

0

ρ1−n(ρn−1dρ) +
2nωn(2ε)

n−1

ε(2− n)(2ε)n−1

∫ 2ε

0

ρ2−n(ρn−1dρ)

)
= sup |f |

(
2ε+

2

ε(n− 2)
· (2ε)

2

2

)
= sup |f | 2nε

n− 2
.

The third to last equality is from co-area formula, along with change of variables. Since the
upper bound is independent of x, the uniformity follows. For n = 2, we leave the proof to
the reader. ■

Proposition 1.2.5. Suppose f is bounded and locally Hölder continuous (with exponent
α ≤ 1) in Ω and let w be the Newtonian potential of f . Then w is C2(Ω), ∆w = f in Ω and
for any x ∈ Ω,

wij(x) =

∫
Ω0

Γij(x− y)(f(y)− f(x))dy − f(x)

∫
∂Ω0

Γi(x− y)νj(y)dsy.

Here Ω0 is domain containing Ω where the divergence theorem holds, and f is extended ot
vanish outside Ω.

Proof. Similar to above. Come back to this if there’s time. Proof techniques combine those
in Theorems 1.2.4 and 1.2.6. ■

We provide the fundamental estimate for the Schauder estimate for the Laplacian.18

Lemma 1.2.6. Let B1 := BR(xo) and B2 := B2R(xo) be concentric balls in Rn. If f ∈
C0,α(B̄2) with w the Newtonian potential of f in B2, then w ∈ C2,α(B̄1). Furthermore,

|D2w|0;B1 +Rα[D2w]α;B1 ≤ C(|f |0;B2 +Rα[f ]α;B2).

17Check this computation...
18Lemma 4.4 of [GT01].
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Proof. As a preliminary, we remark that |B2| = ωn(2R)n and |∂B2| = nωn(2R)n−1. For
x ∈ B1, we obtain from 1.2.5 and 1.2.3, the first estimate

|wij(x)| ≤ |f(x)|
∫
∂B2

|Γi(x− y)νj(y)|dsy +
∫
B2

|Γij(x− y)(f(y)− f(x))|dy

≤ |f(x)|
nωn

∫
∂B2

|x− y|1−n︸ ︷︷ ︸
(∗)

dsy +
[f ]x;α
ωn

∫
B2

|x− y|α−ndy

≤ |f(x)|
nωn

R1−n

∫
∂B2

dsy +
[f ]x;α
ωn

∫
B3R(x)

|x− y|α−ndy︸ ︷︷ ︸
(∗∗)

≤ 2n−1|f(x)|+ n

α
(3R)α[f ]x;α,

≤ C(|f(x)|+Rα[f ]α;x),

where C = C(n, α). Here, (∗) follows since R ≤ |x − y|, and so |x − y|1−n ≤ R1−n since
n ≥ 2. We calculate (∗∗) as

(∗∗) = nωn(3R)n−1

(3R)n−1

∫ 3R

0

ρα−n(ρn−1dρ)

= (nωn)
ρα

α

∣∣∣∣3R
0

=
nωn

α
(3R)α.

Notice the idea here to shift the center of the ball from xo to x; in doing so, we must enlarge
the radius to 3R so that we capture B2. The first estimate gives

|D2w|0;B1 ≤ C(|f |0;B2 +Rα[f ]α;B2).
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For our second estimate, for x, x̄ ∈ B1, ξ = 1
2
(x+ x̄) and δ = |x− x̄|,

wij(x̄)− wij(x) = −f(x̄)

∫
∂B2

Γi(x̄− y)νj(y)dsy + f(x)

∫
∂B2

Γi(x− y)νj(y)dsy

+

∫
B2

Γij(x̄− y)(f(y)− f(x̄))dy −
∫
B2

Γij(x− y)(f(y)− f(x))dy

= f(x)

∫
∂B2

Γi(x− y)− Γi(x̄− y)νj(y)dsy︸ ︷︷ ︸
I1

+(f(x)− f(x̄))

∫
∂B2

Γi(x̄− y)νj(y)dsy︸ ︷︷ ︸
I2

+

∫
Bδ(ξ)

Γij(x− y)(f(x)− f(y))dy︸ ︷︷ ︸
I3

+

∫
Bδ(ξ)

Γij(x̄− y)(f(y)− f(x̄))dy︸ ︷︷ ︸
I4

+ (f(x)− f(x̄))

∫
B2−Bδ(ξ)

Γij(x− y)dy︸ ︷︷ ︸
I5

+

∫
B2−Bδ(ξ)

Γij(x− y)− Γij(x̄− y)(f(x̄)− f(y))dy︸ ︷︷ ︸
I6

,

where the second equality follows from (detailed) inspection. We estimate I1, ..., I6.
19

1. We use mean value inequality for some x̂ between x, x̄, then follow with the same trick
as the first term in the first estimate to compute

|I1| ≤ |x− x̄|
∫
∂B2

|DΓi(x̂− y)|dsy

≤ |x− x̄|
∫
∂B2

|x̂− y|−ndsy

≤ |x− x̄|
ωn

∫
∂B2

R−ndsy

=
|x− x̄|n2n−1

R

≤ n2n−α

(
δ

R

)α

,

where the last estimate follows by simple computation from δ = |x− x̄| < 2R.20

2. The estimate follows the ideas when estimating the first term of wij(x). We record
our estimates for ease of replication in I5. Note that the final answer is completely

19My labelling of the six integrals follows that in [GT01].
20There is an extra factor of n in [GT01], which I don’t see where it comes from. Similarly, this extra

factor appears when estimating |I6|.
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independent of the ball.

|I2| ≤
1

nωn

∫
∂B2

|x− y|1−ndsy

≤ 1

nωn

∫
∂B2

R1−ndsy = 2n−1.

3. |I3| ≤ n
α

(
3δ
2

)α
[f ]α;x. The estimate follows the ideas when estimating the second term

of wij(x) with Bδ(x) in the place of B2 and B 3δ
2
in the place of B3R(x).

4. |I4| ≤ n
α

(
3δ
2

)α
[f ]α;x̄. Ditto, but swap x for x̄.

5. Since the estimate in I2 is independent of the ball, the desired estimate follows imme-
diately.

|I5| ≤
∣∣∣∣∫

∂B2

Γi(x− y)νj(y)dsy

∣∣∣∣+ ∣∣∣∣∫
∂Bδ(ξ)

Γi(x− y)νj(y)dsy

∣∣∣∣
≤ 2(2n−1) = 2n

6. Using ideas as before, we calculate for C = C(n) and x̂ some point between x̄ and x,

|I6| ≤ |x− x̄|
∫
B2−Bδ(ξ)

|DΓij(x̂− y)||f(x̄)− f(y)|dy

≤ Cδ

∫
B2−Bδ(ξ)

|f(x̄)− f(y)|
|x̂− y|n+1

dy

≤ Cδ[f ]α,x

(
3

2

)α ∫
Bδ(ξ)

|ξ − y|α−n−1dy

≤ C

1− α
δα[f ]α,x

(
3

2

)α

Altogether, the second estimate gives

Rα[D2w]α;B1 ≤ C(|f |0;B2 +Rα[f ]α;B2).

■

Lemma 1.2.6 proves a Schauder estimate for concentric balls. We introduce our final norm.
Let η = diameter of Ω, then

|u|′k,α;Ω :=
k∑

j=0

sup
x∈Ω

ηj|Dju(x)|+ sup
x ̸=y∈Ω

ηk+α |Dku(x)−Dku(y)|
|x− y|α

.

Again, observe in the k = 0 case, this norm agree with the standard one. We now state the
fundamental estimate to show Schauder estimates for the Laplacian.21

21Theorem 4.6 of [GT01].
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Lemma 1.2.7. Let u ∈ C2(Ω) and f ∈ C0,α(Ω) satisfy ∆u = f . Then u ∈ C2,α(Ω) and for
any two concentric balls B1 := BR(xo), B2 := B2R(xo) compactly contained in Ω,

|u|′2,α;B1
≤ C(|u|0;B2 + |f |′0,α;B2

).

Proof. By Theorem 1.2.2, we may write

u = v + w,

for harmonic h and w is the Newtonian potential of f . The estimates 1.2.4 and 1.2.6 together
give the result. ■

Finally, we have arrived at the promised land.22

Theorem 1.2.8. If u ∈ C2(Ω) and f ∈ C0,α(Ω), with ∆u = f , then u ∈ C2,α(Ω) with

|u|∗2,α;Ω ≤ C(|u|0,Ω + |f |(2)0,α;Ω).

Proof. We first obtain an estimate on the |u|∗2,Ω by the RHS. Since |u|0;Ω appears on the
RHS, we only need to worry about bounding [u]∗j;Ω for j = 1, 2. We compute for 3R = dx
and B1 := BR(x) and B2 := B2R(x),

dx|Du(x)|+ d2x|D2u(x)| ≤ (3R)|Du|0;B1 + (3R)2|D2u|0;B1

≤ C(|u|0;B2 +R2|f |′0,α;B2
)

≤ C(|u|0;Ω +R2|f |0,α;B2)

≤ C(|u|0;Ω + |f |(2)0,α;Ω),

where the second inequality follows from Lemma 1.2.7. Therefore, we have

|u|∗2;Ω ≤ C(|u|0;Ω + |f |(2)0,α;Ω). (∗)

Next, we obtain an estimate on [u]∗2,α;Ω by the RHS. We compute for x ̸= y ∈ Ω, with
dx = dx,y.

d2+α
x

|D2u(x)−D2u(y)|
|x− y|α

≤ (3R)2+α[D2u]0,α;B1 + 3α+1(3R)2 sup
x∈Ω

|D2u(x)|

≤ C(|u|0;B2 +R2|f |′0;α;B2
) + 6[u]∗2;Ω

≤ C(|u|0;Ω + |f |(2)0,α;Ω)

where the first inequality follows from a near-and-far estimate on B1, as in the proof of 1.1.1.
The second inequality follows from Lemma 1.2.7. The last inequality follows from (∗). ■

22Theorem 4.8 of [GT01].
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